【題目】知函數(shù),且函數(shù)處的切線平行于直線.

(1)求實數(shù)的值;

(2)若在上存在一點,使得成立.求實數(shù)的取值范圍.

【答案】(1)(2).

【解析】

試題分析:(1)由導(dǎo)數(shù)幾何意義得所以求導(dǎo)數(shù)列式得(2)本題不宜分離,因此作差構(gòu)造函數(shù),利用分類討論法求函數(shù)最小值:由于,所以討論與1,e的大小,分三種情況:當(dāng)時,的最小值為,當(dāng)時,的最小值為,當(dāng)時,的最小值為,解對應(yīng)不等式即得.

試題解析:(1)的定義域為,函數(shù)處的切線平行于直線..

(2)若在上存在一點,使得成立,構(gòu)造函數(shù)上的最小值小于零.,

當(dāng)時,即時,上單調(diào)遞減,所以的最小值為,由可得,;

當(dāng)時,即時,上單調(diào)遞增,所以的最小值為,由可得;

當(dāng)時,即時,可得的最小值為,此時,不成立.綜上所述:可得所求的范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),.

)求的單調(diào)區(qū)間和極值;

)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域;

(2)當(dāng)AE為何值時,綠地面積y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),令,其中是函數(shù)的導(dǎo)函數(shù).

(1)當(dāng)時,求的極值;

(2)當(dāng)時,若存在,使得恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司采用招考方式引進人才,規(guī)定必須在,三個測試中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每測試個點試結(jié)果互不影響,若考生小李和小王起前來參加招考,小李在測試點測試合格的概率分別為,小王在上述三個測試點測試合格的概率都是.

(1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可最大說明理由;

(2)假設(shè)小李選測試點進行測試,小王選擇測試點進行測試,為兩人在各測試點測試合格的測試點個數(shù)之和,機變的分布列及數(shù)學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店計劃每天購進某商品若干件,商店每銷售一件該商品可獲利潤60元,若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利40元.

(1)若商品一天購進該商品10件,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:件,)的函數(shù)解析式;

(2)商店記錄了50天該商品的日需求量(單位:件,),整理得下表:

若商店一天購進10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)在高考前各做了5次立定跳遠測試,測得甲的成績?nèi)缦?/span>(單位:米)2.20,2.30,2.30,2.40,2.30,若甲、乙兩人的平均成績相同,乙的成績的方差是0.005,那么甲、乙兩人成績較穩(wěn)定的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓心坐標為的圓軸及直線分別相切于、兩點,另一圓與圓外切,且與軸及直線分別相切于兩點

1求圓和圓的方程;

2過點作直線的平行線,求直線被圓截得的弦的長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】揚州瘦西湖隧道長米,設(shè)汽車通過隧道的速度為米/秒.根據(jù)安全和車流的需要,當(dāng)相鄰兩車之間的安全距離米;當(dāng)相鄰兩車之間的安全距離米(其中是常數(shù)).當(dāng)時,,當(dāng)時,

(1)求的值;

(2)一列汽車組成的車隊勻速通過該隧道(第一輛汽車車身長為米,其余汽車車身長為米,每輛汽車速度均相同).記從第一輛汽車車頭進入隧道,至第汽車車尾離開隧道所用的時間為秒.

表示為的函數(shù);

要使車隊通過隧道時間不超過秒,求汽車速度的范圍.

查看答案和解析>>

同步練習(xí)冊答案