已知向量數(shù)學(xué)公式=(sinx,-cosx),數(shù)學(xué)公式=(cosθ,-sinθ),其中0<θ<π.函數(shù)f(x)=數(shù)學(xué)公式在x=π處取最小值.
(Ⅰ)求θ的值;
(Ⅱ)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若sinB=2sinA,數(shù)學(xué)公式,求A.

解:(Ⅰ)∵f(x)==sinxcosθ+cosxsinθ=sin(x+θ)
又∵函數(shù)f(x)在x=π處取最小值,∴sin(π+θ)=-1,即  sinθ=-1
又0<θ<π,∴…(5分)∴
(Ⅱ)法一:∵,∴∵0<C<π,∴.                  
∵A+B+C=π,∴
代入sinB=2sinA中,∴,∴
,
∵0<A<π,∴.        
(Ⅱ)法二:∵,∴∵0<C<π,∴.           
∵sinB=2sinA,由正弦定理有b=2a.          
又由余弦定理得
∴a2+c2=b2,∴
∵A+B+C=π,∴.             
分析:(Ⅰ)通過(guò)向量的數(shù)量積以及兩角和的正弦函數(shù),化簡(jiǎn)函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,通過(guò)x=π處取最小值求θ的值;
(Ⅱ)發(fā)一:通過(guò),求出C的值,利用三角形的內(nèi)角和與sinB=2sinA,通過(guò)三角代換直接求A.
法二:通過(guò),求出C的值,利用正弦定理和余弦定理,求出B,然后求出A.
點(diǎn)評(píng):本題通過(guò)向量的數(shù)量積,考查三角函數(shù)的基本公式的應(yīng)用,正弦定理與余弦定理的應(yīng)用,考查計(jì)算能力,好題,常考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx,cosx),向量
b
=(1,
3
)
,則|
a
+
b
|的最大值為( 。
A、3
B、
3
C、1
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx,cosx),
b
=(sinx+2cosx,3cosx),f(x)=
a
b
,x∈R.求
(Ⅰ)函數(shù)f(x)的最大值及取得最大值的自變量x的集合;
(Ⅱ)函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•衢州一模)已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1).
(I)當(dāng)向量
a
與向量
b
共線時(shí),求tanx的值;
(II)求函數(shù)f(x)=2(
a
+
b
)•
b
圖象的一個(gè)對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•深圳二模)已知向量
m
=(sinx,-cosx),
n
=(cosθ,-sinθ),其中0<θ<π.函數(shù)f(x)=
m
n
在x=π處取最小值.
(Ⅰ)求θ的值;
(Ⅱ)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若sinB=2sinA,f(C)=
1
2
,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosx+sinx,
3
cosx),  
b
=(cosx-sinx,2sinx)
,記f(x)=
a
b
,  x∈R

(1)求函數(shù)f(x)的最小正周期.
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=1,且a=1,b+c=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案