【題目】如圖所示,四棱錐的底面是直角梯形,平面,,中點,且.

1)求證:平面;

2)若與底面所成角為,求二面角的余弦值.

【答案】(1)證明見解析(2)

【解析】

1)推導出,則可證明平面.

2)由已知線面角可得,以為坐標原點,分別為軸、軸、軸的正方向建立空間直角坐標系,求出平面SBC的法向量和平面的法向量,利用向量法能求出二面角的余弦值.

1)因為平面平面,所以

在直角梯形中,,,∴,

,所以平面.

2)因為平面,所以與底面所成角,,所以

為坐標原點,分別為軸、軸、軸的正方向建立空間直角坐標系,

由題意得B40,0),E2,00),C2,20),S00,2 ),

設平面的法向量為x,yz),

所以,即,

的法向量,同理得面的法向量

二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面,已知,,,點是棱的中點.

1)求證:平面;

2)求二面角的余弦值;

3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若函數(shù)有唯一的極小值點,求實數(shù)的取值范圍;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某購物商場分別推出支付寶和微信掃碼支付購物活動,活動設置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.現(xiàn)統(tǒng)計了活動剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:

1)根據(jù)散點圖判斷,在推廣期內(nèi),掃碼支付的人次關于活動推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預測活動推出第天使用掃碼支付的人次;

2)推廣期結(jié)束后,商場對顧客的支付方式進行統(tǒng)計,結(jié)果如下表:

支付方式

現(xiàn)金

會員卡

掃碼

比例

商場規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計相應事件發(fā)生的概率,估計該顧客支付的平均費用是多少?

參考數(shù)據(jù):設,,

參考公式:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面內(nèi)任意一點到兩定點、的距離之和為.

(1)若點是第二象限內(nèi)的一點且滿足,求點的坐標;

(2)設平面內(nèi)有關于原點對稱的兩定點,判別是否有最大值和最小值,請說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知RtABC如圖(1),∠C90°D.E分別是AC,AB的中點,將△ADE沿DE折起到PDE位置(即A點到P點位置)如圖(2)使∠PDC60°

1)求證:BCPC;

(2)若BC2CD4,求點D到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱柱ABCDA1B1C1D1中,OBD的中點,E是棱CC1上任意一點.

1)證明:BDA1E;

2)如果AB=2,OEA1E,求AA1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為滿足人們的閱讀需求,圖書館設立了無人值守的自助閱讀區(qū),提倡人們在閱讀后將圖書分類放回相應區(qū)域.現(xiàn)隨機抽取了某閱讀區(qū)500本圖書的分類歸還情況,數(shù)據(jù)統(tǒng)計如下(單位:本).

文學類專欄

科普類專欄

其他類專欄

文學類圖書

100

40

10

科普類圖書

30

200

30

其他圖書

20

10

60

1)根據(jù)統(tǒng)計數(shù)據(jù)估計文學類圖書分類正確的概率;

2)根據(jù)統(tǒng)計數(shù)據(jù)估計圖書分類錯誤的概率;

3)假設文學類圖書在文學類專欄科普類專欄、其他類專欄的數(shù)目分別為,,其中,,,當,,的方差最大時,求,的值,并求出此時方差的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點,若為線段上的動點(不含.

1)平面與平面是否互相垂直?如果是,請證明;如果不是,請說明理由;

2)求二面角的余弦值的取值范圍.

查看答案和解析>>

同步練習冊答案