精英家教網 > 高中數學 > 題目詳情

【題目】過雙曲線的右支上的一點P作一直線l與兩漸近線交于AB兩點,其中P的中點;

1)求雙曲線的漸近線方程;

2)當P坐標為時,求直線l的方程;

3)求證:是一個定值.

【答案】(1);(2;(3)見解析

【解析】

(1)根據漸近線的方程直接求解即可.

(2)根據題意求出點P坐標,再根據中點坐標公式求解的坐標,進而求得直線l的斜率,再利用點斜式求解方程即可.

(3),,,根據P的中點求出,,進而求得,最后利用雙曲線的方程求解即可.

1)雙曲線,,可得雙曲線的漸近線方程為,

即為;

2)令可得,解得,(負的舍去),設,,

P的中點,可得,,解得,,

即有,可得的斜率為,

則直線l的方程為,即為;

3)證明:設,即有,設,,

P的中點,可得,,解得,,

為定值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知定義在實數集上的函數,把方程稱為函數的特征方程,特征方程的兩個實根稱為的特征根.

1)討論函數的奇偶性,并說明理由;

2)求表達式;

3)把函數的最大值記作、最小值記作,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面為直角梯形,為直角,平面,且.

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經過多年的運作,雙十一搶購活動已經演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2014雙十一網購狂歡節(jié),某廠家擬投入適當的廣告費,對網上所售產品進行促銷.經調查測算,該促銷產品在雙十一的銷售量p萬件與促銷費用x萬元滿足(其中,a為正常數).已知生產該產品還需投入成本萬元(不含促銷費用),產品的銷售價格定為

元/件,假定廠家的生產能力完全能滿足市場的銷售需求.

(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;

(2)促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某加油站擬建造如圖所示的鐵皮儲油罐(不計厚度,長度單位為米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設該儲油罐的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為千元.設該儲油罐的建造費用為千元.

(1) 寫出關于的函數表達式,并求該函數的定義域;

(2) 若預算為萬元,求所能建造的儲油罐中的最大值(精確到),并求此時儲油罐的體積(單位: 立方米,精確到立方米).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,對于點、直線,我們稱為點到直線的方向距離.

1)設橢圓上的任意一點到直線,的方向距離分別為、,求的取值范圍.

2)設點、到直線的方向距離分別為、,試問是否存在實數,對任意的都有成立?若存在,求出的值;不存在,說明理由.

3)已知直線和橢圓,設橢圓的兩個焦點,到直線的方向距離分別為、滿足,且直線軸的交點為、與軸的交點為,試比較的長與的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)若動點到定點的距離與到定直線的距離之比為,求證:動點的軌跡是橢圓;

2)設(1)中的橢圓短軸的上頂點為,試找出一個以點為直角頂點的等腰直角三角形,并使得、兩點也在橢圓上,并求出的面積;

3)對于橢圓(常數),設橢圓短軸的上頂點為,試問:以點為直角頂點,且兩點也在橢圓上的等腰直角三角形有幾個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓,定義橢圓C相關圓E:.若拋物線的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.

1)求橢圓C及其相關圓E的方程;

2)過相關圓E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:為定值(為坐標原點);

3)在(2)的條件下,求面積的取值范圍.

查看答案和解析>>

同步練習冊答案