【題目】如圖,橢圓的離心率為,其左頂點在圓上.
(1)求橢圓的方程;
(2)直線與橢圓的另一個交點為,與圓的另一個交點為.
(ⅰ)當時,求直線的斜率;
(ⅱ)是否存在直線,使?若存在,求出直線的斜率;若不存在,說明理由.
【答案】(1);(2)(ⅰ)1,-1;(ⅱ)不存在直線,使得.
【解析】
試題分析:(1)要求橢圓標準方程,就要知道兩個獨立條件,橢圓左頂點在圓說明,再由離心率可得,最后由可得;(2)本題考查解析幾何的基本方法,直線與橢圓相交問題與存在性命題,解決方法是(ⅰ)設點,顯然直線存在斜率,設直線的方程為,與橢圓方程聯(lián)立并代入消元得,其中一個根是-4,另一根設為(易得),再由弦長公式可求得;(ⅱ)圓中的弦長利用垂徑定理求得,把代入方程,解之,如能解得值,說明存在,如方程無解,說明不存在.
試題解析:(1)因為橢圓的左頂點在圓上,所以,
又離心率為,所以,所以,
所以,所以的方程為.
(2)(ⅰ)設點,顯然直線存在斜率,
設直線的方程為,與橢圓方程聯(lián)立得,
化簡得到,
因為-4為上面方程的一個根,所以,
所以,
由,
代入得到,解得,所以直線的斜率為1,-1.
(ⅱ)圓心到直線的距離為,,
因為,
代入得到,
顯然,,所以不存在直線,使得.
科目:高中數(shù)學 來源: 題型:
【題目】已知F1 , F2為橢圓 的左、右焦點,F(xiàn)2在以 為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), 的圖象在點處的切線與直線平行.
(1)求的值;
(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,三角形ABC為等腰直角三角形,AC=BC= ,AA1=1,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)二面角B1﹣CD﹣B的平面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設定義在D上的函數(shù)y=h(x)在點P(x0 , h(x0))處的切線方程為l:y=g(x),當x≠x0時,若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”,則f(x)=x2﹣6x+4lnx的“類對稱點”的橫坐標是( )
A.1
B.
C.e
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,若存在常數(shù)T≠0,使得f(x)=Tf(x+T)對任意的x∈R成立,則稱函數(shù)f(x)是Ω函數(shù). (Ⅰ)判斷函數(shù)f(x)=x,g(x)=sinπx是否是Ω函數(shù);(只需寫出結(jié)論)
(Ⅱ)說明:請在(i)、(ii)問中選擇一問解答即可,兩問都作答的按選擇(i)計分
(i)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是偶函數(shù),則f(x)是周期函數(shù);
(ii)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是奇函數(shù),則f(x)是周期函數(shù);
(Ⅲ)求證:當a>1時,函數(shù)f(x)=ax一定是Ω函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】證明與分析
(1)已知a,b為正實數(shù).求證: + ≥a+b;
(2)某題字跡有污損,內(nèi)容是“已知|x|≤1, ,用分析法證明|x+y|≤|1+xy|”.試分析污損部分的文字內(nèi)容是什么?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com