設(shè)函數(shù)f(x)=sinx+x2013,令f1(x)=f′(x),是f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N+),則f2013=
cosx+2013!
cosx+2013!
分析:分別求出函數(shù)的導(dǎo)數(shù),通過觀察每個(gè)式子的特點(diǎn)尋找出規(guī)律,根據(jù)歸納推理得到結(jié)果.
解答:解:由題意可知:f1(x)=f′(x)=cos?x+2013?x2012
f2(x)=f1′(x)=-sin?x+2013?2012x2011,
f3(x)=f2′(x)=-cos?x+2013?2012?2011x2010
f4(x)=f3′(x)=sin?x+2013?2012?2011?2010x2009,
f5(x)=f4′(x)=cos?x+2013?2012?2011?2010?2009x2008,
所以根據(jù)歸納推理可知,
f2013(x)=f2012'(x)=cos?x+2013?2012???1=cos?x+2013!,
故答案為:cosx+2013!.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的運(yùn)算以及歸納推理的應(yīng)用,考查學(xué)生的運(yùn)算能力,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)Q(x)的圖象的一部分,設(shè)函數(shù)f(x)=sinx,g ( x )=
1
x
,則Q(x)是( 。
A、
f(x)
g(x)
B、f(x)g(x)
C、f(x)-g(x)
D、f(x)+g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx,g(x)=
1
x
,如圖是函數(shù)F(x)圖象的一部分,則F(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
bc
b2+c2-a2
=tanA

(1)求角A;
(2)設(shè)函數(shù)f(x)=sinx+2sinAcosx將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的
1
2
,把所得圖象向右平移
π
6
個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對(duì)稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•杭州一模)設(shè)函數(shù)f(x)=
sinx+cosx-|sinx-cosx|
2
(x∈R),若在區(qū)間[0,m]上方程f(x)=-
3
2
恰有4個(gè)解,則實(shí)數(shù)m的取值范圍是
[
3
,
17π
6
)
[
3
17π
6
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx-cosx+ax+1.
(1)當(dāng)a=1,x∈[0,2π]時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若函數(shù)f(x)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案