15.已知x,y∈R,則“x>y”是“|x|>|y|”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 舉例,結(jié)合結(jié)合充分條件和必要條件的定義即可得到結(jié)論.

解答 解:若x>y,如x=1,y=-1,則|x|>|y|不成立,
故命題:“x>y”⇒“|x|>|y|”為假命題;
若|x|>|y|成立,如x=-2,y=1則x>y不成立,
故命題:“|x|>|y|”⇒“x>y”為假命題;
故x>y”是“|x|>|y|”的既不充分也不必要條件.
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是充要條件的定義,我們先判斷p⇒q與q⇒p的真假,再根據(jù)充要條件的定義給出結(jié)論是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{4x-y-10≤0}\\{x-2y+8≥0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則$\frac{8a+3b+2ab}{ab}$的最小值為( 。
A.12B.$\frac{21}{3}$C.$\frac{67}{6}$D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=(x-a)|x|的圖象與直線y=1有且只有一個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是a>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,則f(9)=2,g[f(3)]=1,f[f($\frac{1}{9}$)]=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=x2+2ax+2,x∈R.
(Ⅰ)若函數(shù)F(x)=f[f(x)]與f(x)在x∈R時(shí)有相同的值域,求a的取值范圍.
(Ⅱ)若方程f(x)+|x2-1|=2在(0,2)上有兩個(gè)不同的根α,β,求a的取值范圍,并證明$\frac{1}{α}+\frac{1}{β}$<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$目標(biāo)函數(shù)z=2x+y的最大值是14,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為10,則$\frac{2}{a}$+$\frac{3}$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0).過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}\right.$(t為參數(shù)).設(shè)直線l與曲線C分別交于M,N兩點(diǎn).若|PM|,|MN|,|PN|成等比數(shù)列,則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓M:$\frac{x^2}{4}+\frac{y^2}{3}$=1,點(diǎn)F1,C分別是橢圓M的左焦點(diǎn)、左頂點(diǎn),過點(diǎn)F1的直線l(不與x軸重合)交M于A,B兩點(diǎn).
(Ⅰ)求M的離心率及短軸長;
(Ⅱ)是否存在直線l,使得點(diǎn)B在以線段AC為直徑的圓上,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線y2=12x焦點(diǎn)的一條直線與拋物線相交于A、B兩點(diǎn),若|AB|=10,則線段AB的中點(diǎn)到y(tǒng)軸的距離等于( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案