三棱錐P-ABC的高為PH,若三條側(cè)棱相等,則H為△ABC的( )
A.內(nèi)心
B.外心
C.垂心
D.重心
【答案】
分析:三棱錐P-ABC的高為PH,若PA=PB=PC,可證得△PHA≌△PHB≌△PHC,從而證得HA=HB=HC,符合這一性質(zhì)的點H是△ABC外心.
解答:證明:三棱錐P-ABC的高為PH,若PA=PB=PC,
故△PHA,△PHB,△PHC都是直角三角形
∵PH是公共邊,PA=PB=PC
∴△PHA≌△PHB≌△PHC
∴HA=HB=HC
故H是△ABC外心
故選B
點評:本題考查三角形五心,求解本題的關(guān)鍵是能夠根據(jù)題設(shè)條件得出PA,PB,PC在底面上的射影相等,以及熟練掌握三角形個心的定義,本題是一個判斷形題,是對基本概念的考查題.