【題目】如圖,四棱錐 中,是正三角形,四邊形ABCD是矩形,且平面平面.

(1)若點(diǎn)E是PC的中點(diǎn),求證:平面BDE;

(2)若點(diǎn)F在線段PA上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.

【答案】)證明見解析;(

【解析】

試題()連接AC,設(shè)AC∩BD=Q,又點(diǎn)EPC的中點(diǎn),則在△PAC中,中位線EQ∥PA,又EQ平面BDEPA平面BDE.所以PA∥平面BDE;()由平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥POAB上一點(diǎn)M,則FM⊥平面ABCD,進(jìn)一步利用求得最后利用平行線分線段成比例求出λ的值

試題解析:()連接AC,設(shè)AC∩BD=Q,又點(diǎn)EPC的中點(diǎn),則在△PAC中,中位線EQ∥PA,

EQ平面BDEPA平面BDE.所以PA∥平面BDE

)解:依據(jù)題意可得:PA=AB=PB=2,取AB中點(diǎn)O

所以PO⊥AB,且又平面PAB⊥平面ABCD,則PO⊥平面ABCD;

FM∥POAB上一點(diǎn)M,則FM⊥平面ABCD,因?yàn)樗倪呅?/span>ABCD是矩形,

所以BC⊥平面PAB,則△PBC為直角三角形,

所以,則直角三角形△ABD的面積為,

FM∥PO得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,方程,為不相等的兩個(gè)正數(shù))所代表的曲線是( )

A. 三角形 B. 正方形 C. 非正方形的長(zhǎng)方形 D. 非正方形的菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線與不等式組表示的平面區(qū)域無公共點(diǎn),則的取值范圍是

A. B. C. D. R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1(x3)2(y1)24和圓C2(x4)2(y5)24.

(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;

(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),(其中,),在上既無最大值,也無最小值,且,則下列結(jié)論成立的是(

A.對(duì)任意,則

B.的圖象關(guān)于點(diǎn)中心對(duì)稱

C.函數(shù)的單調(diào)減區(qū)間為

D.函數(shù)的圖象相鄰兩條對(duì)稱軸之間的距離是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , , 為線段上的點(diǎn).

(1)證明: 平面;

(2)若的中點(diǎn),求與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若函數(shù)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

2)令,若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求的取值范圍;

(2)當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為(萬元),它們與投入資金(萬元)的關(guān)系有如下公式:,,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.

(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬元),求總利潤(rùn)(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案