【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列。在歐洲,這個表叫做帕斯卡三角形。帕斯卡(1623——1662)是在1654年發(fā)現(xiàn)這一規(guī)律的,比楊輝要遲年,比賈憲遲年。如圖的表在我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里就出現(xiàn)了,這又是我國數(shù)學史上的一個偉大成就。如圖所示,在楊輝三角中,從1開始箭頭所指的數(shù)組成一個鋸齒形數(shù)列:,則此數(shù)列前項和為________.

【答案】164

【解析】

分別考查每行第二個數(shù)和第三個數(shù)組成的數(shù)列,然后求和兩次即可求得最終結(jié)果。

考查每行第二個數(shù)組成的數(shù)列:,歸納推理可知其通項公式為,其前項和;

每行第三個數(shù)組成的數(shù)列:,

歸納推理可知其通項公式為

其前8項和,

據(jù)此可得題中數(shù)列前項和為.

故答案為:164

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如果對一切實數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是不小于3的正整數(shù),集合,對于集合中任意兩個元素,.

定義1:.

定義2:若,則稱,互為相反元素,記作,或.

(Ⅰ)若,,,試寫出,,以及的值;

(Ⅱ)若,證明:;

(Ⅲ)設是小于的正奇數(shù),至少含有兩個元素的集合,且對于集合中任意兩個不相同的元素,,都有,試求集合中元素個數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的焦點為F1 , F2 , 離心率為 ,點P為其上動點,且三角形PF1F2的面積最大值為 ,O為坐標原點.
(1)求橢圓C的方程;
(2)若點M,N為C上的兩個動點,求常數(shù)m,使 =m時,點O到直線MN的距離為定值,求這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積S= accosB.
(1)求角B的大;
(2)若a=2 ,點D在AB的延長線上,且AD=3,cos∠ADC= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間四邊形ABCD中,AB=BD=AD=2,BC=1,CD= ,若二面角A﹣BD﹣C的取值范圍為[ ],則該幾何體的外接球表面積的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】牛頓法求方程f(x)=0近似根原理如下:求函數(shù)y=f(x)在點(xn , f(xn))處的切線y=f′(xn)(x﹣xn)+f(xn),其與x軸交點橫坐標xn+1=xn (n∈N*),則xn+1比xn更靠近f(x)=0的根,現(xiàn)已知f(x)=x2﹣3,求f(x)=0的一個根的程序框圖如圖所示,則輸出的結(jié)果為(
A.2
B.1.75
C.1.732
D.1.73

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 的定義域為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】體積為 的球有一個內(nèi)接正三棱錐P﹣ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P﹣ABC的體積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案