精英家教網 > 高中數學 > 題目詳情
13、如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4=
2
分析:首先分析題目已知a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,發(fā)現等式左邊只有第一項含有x4,故比較等式兩邊x4的系數可直接得到a1=1,再根據特殊值的方法把x=1,x=0代入等式求出a1,a2,a3,a4,a5,的關系即可求解出答案.
解答:解:因為已知a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,
比較等式兩邊x4的系數可直接得到a1=1,
又令x=1代入等式,得a5=1,
令x=0代入等式,得a1-a2+a3-a4+a5=0,
所以a2-a3+a4=2.
故答案為:2.
點評:此題主要考查二項式的系數的問題,其中涉及到特殊值代入等式比較系數的方法,這種思想在求二項式的問題中經常用到,同學們需要多加理解掌握.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}⊆A,至少存在一個i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質P.
如圖,作n行m列數表,定義數表中的第k行第l列的數為akl=
1(k∈Al)
0(k∉Al)

a11 a12 a1m
a21 a22 a2m
an1 an2 anm
(Ⅰ)當n=4時,判斷下列兩個集合組是否具有性質P,如果是請畫出所對應的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)當n=7時,若集合組A1,A2,A3具有性質P,請先畫出所對應的7行3列的一個數表,再依此表格分別寫出集合A1,A2,A3;
(Ⅲ)當n=100時,集合組A1,A2,…,At是具有性質P且所含集合個數最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個數)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4=________.

查看答案和解析>>

科目:高中數學 來源:2011年上海市盧灣區(qū)高考數學一模試卷(理科)(解析版) 題型:解答題

如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4=   

查看答案和解析>>

科目:高中數學 來源:2011年云南省高三數學一輪復習單元測試11:排列組合、二項式定理(解析版) 題型:解答題

如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4=   

查看答案和解析>>

同步練習冊答案