(2012•浙江)如圖,中心均為原點(diǎn)O的雙曲線與橢圓有公共焦點(diǎn),M,N是雙曲線的兩頂點(diǎn).若M,O,N將橢圓長(zhǎng)軸四等分,則雙曲線與橢圓的離心率的比值是(
分析:根據(jù)M,N是雙曲線的兩頂點(diǎn),M,O,N將橢圓長(zhǎng)軸四等分,可得橢圓的長(zhǎng)軸長(zhǎng)是雙曲線實(shí)軸長(zhǎng)的2倍,利用雙曲線與橢圓有公共焦點(diǎn),即可求得雙曲線與橢圓的離心率的比值.
解答:解:∵M(jìn),N是雙曲線的兩頂點(diǎn),M,O,N將橢圓長(zhǎng)軸四等分
∴橢圓的長(zhǎng)軸長(zhǎng)是雙曲線實(shí)軸長(zhǎng)的2倍
∵雙曲線與橢圓有公共焦點(diǎn),
∴雙曲線與橢圓的離心率的比值是2
故選B.
點(diǎn)評(píng):本題考查橢圓、雙曲線的幾何性質(zhì),解題的關(guān)鍵是確定橢圓的長(zhǎng)軸長(zhǎng)是雙曲線實(shí)軸長(zhǎng)的2倍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為
10
,不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求△APB面積取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E與直線AA1的交點(diǎn).
(1)證明:
(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)如圖,F(xiàn)1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a,b>0)的在左、右焦點(diǎn),B是虛軸的端點(diǎn),直線F1B與C的兩條漸近線分別交于P,Q兩點(diǎn),線段PQ的垂直平分線與x軸交于點(diǎn)M.若|MF2|=|F1F2|則C的離心( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)如圖,在直角坐標(biāo)系xOy中,點(diǎn)P(1,
1
2
)到拋物線C:y2=2px(P>0)的準(zhǔn)線的距離為
5
4
.點(diǎn)M(t,1)是C上的定點(diǎn),A,B是C上的兩動(dòng)點(diǎn),且線段AB被直線OM平分.
(1)求p,t的值.
(2)求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為2
3
的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2
6
,M,N分別為PB,PD的中點(diǎn).
(1)證明:MN∥平面ABCD;
(2)過點(diǎn)A作AQ⊥PC,垂足為點(diǎn)Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案