【題目】已知△ABC是斜三角形,內角A、B、C所對的邊的長分別為a、b、c.若csinA= acosC.
(1)求角C;
(2)若c= ,且sinC+sin(B﹣A)=5sin2A,求△ABC的面積.
【答案】
(1)解:∵ ,由正弦定理可得sinCsinA=
sinAcosC,
sinA≠0,
∴ ,
得 ,
∵C∈(0,π),
∴ .
(2)解:∵sinC+sin(B﹣A)=5sin2A,sinC=sin(A+B),
∴sin(A+B)+sin(B﹣A)=5sin2A,
∴2sinBcosA=2×5sinAcosA,
∵△ABC為斜三角形,
∴cosA≠0,
∴sinB=5sinA,
由正弦定理可知b=5a (1)
由余弦定理c2=a2+b2﹣2abcosC,
∴ ,(2)
由(1)(2)解得a=5,b=1,
∴
【解析】(1)由 ,利用正弦定理可得sinCsinA=
sinAcosC,于是
,即可得出;(2)由sinC+sin(B﹣A)=5sin2A,sinC=sin(A+B),可得sinB=5sinA,由正弦定理可知b=5a,由余弦定理c2=a2+b2﹣2abcosC,聯(lián)立解出,再利用三角形面積計算公式即可得出.
【考點精析】根據題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:
;
;
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0, ]上的單調性;
(3)當x∈[0, ]時,關于x的方程f(x)=a 恰有兩個不同的解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,四邊形
是菱形,
,
,且
,
交于點
,
是
上任意一點.
(1)求證: ;
(2)已知二面角的余弦值為
,若
為
的中點,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在梯形中,
,
,
,平面
平面
,四邊形
是矩形,
,點
在線段
上.
(1)當為何值時,
平面
?證明你的結論;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 點(n, )在直線y=
x+
上.
(1)求數列{an}的通項公式;
(2)設bn= ,求數列{bn}的前n項和為Tn , 并求使不等式Tn>
對一切n∈N*都成立的最大正整數k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國內某知名連鎖店分店開張營業(yè)期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數越來越多,該分店經理對開業(yè)前天參加抽獎活動的人數進行統(tǒng)計,
表示開業(yè)第
天參加抽獎活動的人數,得到統(tǒng)計表格如下:
經過進一步統(tǒng)計分析,發(fā)現與
具有線性相關關系.
(1)若從這天中隨機抽取兩天,求至少有
天參加抽獎人數超過
的概率;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
,并估計若該活動持續(xù)
天,共有多少名顧客參加抽獎.
參考公式: ,
.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com