14.直線y=5與y=-1在區(qū)間$[{0\;,\;\;\frac{4π}{ω}}]$上截曲線$y=msin\frac{ω}{2}x+n({m>0\;,\;\;n>0})$所得弦長相等且不為零,則下列描述正確的是( 。
A.$m≤\frac{3}{2}\;,\;\;n=\frac{5}{2}$B.m≤3,n=2C.$m>\frac{3}{2}$D.m>3,n=2

分析 曲線$y=msin\frac{ω}{2}x+n({m>0\;,\;\;n>0})$的性質(zhì)知,在一個(gè)周期上截直線y=5與y=-1所得的弦長相等且不為0,可知兩條直線關(guān)于y=n對稱,由此對稱性可求出n,又截得的弦長不為0,故可得振幅大于 3.

解答 解:由題意可得$y=msin\frac{ω}{2}x+n({m>0\;,\;\;n>0})$的圖象關(guān)于直線y=n對稱,
因?yàn)榍被直線y=5與y=-1所得的弦長相等,
所以直線y=5與直線y=-1關(guān)于y=n對稱.
所以n=$\frac{5-1}{2}$=2,
又因?yàn)橄议L相等且不為0,
所以振幅m>$\frac{5+1}{2}$=3.
故選D.

點(diǎn)評 本題考點(diǎn)y=Asin(ωx+φ)中參數(shù)的物理意義,考查三角函數(shù)的圖象的性質(zhì)及其與相應(yīng)參數(shù)的關(guān)系,考查對三角函數(shù)圖象的特征理解的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$=(2tanα,tanβ),向量$\overrightarrow$=(4,-3),且$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$,則tan(α+β)等于( 。
A.$\frac{1}{7}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實(shí)數(shù)a>0,且函數(shù)$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$為奇函數(shù).判斷函數(shù)f(x)的單調(diào)性,并用單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,四面體ABCD中,O、E分別為BD、BC的中點(diǎn),且CA=CB=CD=BD=$\sqrt{2}$,AB=AD=1,則異面直線AB與CD所成角的正切值為.( 。
A.$\sqrt{7}$B.$\frac{\sqrt{7}}{8}$C.$\frac{\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求過點(diǎn)A(2,1),圓心在直線y=-2x上,且與直線x+y-1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校選修乒乓球課程的學(xué)生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法在這70名學(xué)生中抽取一個(gè)樣本,已知在高一年級的學(xué)生中抽取了6名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位長度后得到函數(shù)y=g(x)的圖象,若g(x)≤|g($\frac{π}{6}$)|對x∈R恒成立,則函數(shù)y=g(x)的單調(diào)遞減區(qū)間是( 。
A.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)D.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在數(shù)列{an}中,a1=2,2an+1=2an+1,則a2015的值是( 。
A.1009B.1008C.1010D.1011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知三條直線m,n,l,三個(gè)平面α,β,γ,下面說法正確的是(  )
A.$\left.\begin{array}{l}{α⊥γ}\\{β⊥γ}\end{array}\right\}$⇒α∥βB.$\left.\begin{array}{l}{m⊥l}\\{n⊥l}\end{array}\right\}$⇒m∥nC.$\left.\begin{array}{l}{m∥β}\\{l⊥m}\end{array}\right\}$⇒l∥βD.$\left.\begin{array}{l}{m∥n}\\{n⊥γ}\end{array}\right\}$⇒m⊥γ

查看答案和解析>>

同步練習(xí)冊答案