設(shè)的最大值為g(a)。
(1)設(shè),求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足的所有實(shí)數(shù)a。
解:(1),   ①

,,即。
由①知,
。
(2)由(1)知,,
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),。
(3)由(2)知,顯然當(dāng)時(shí),;
當(dāng)時(shí),,即,解得:a=±1,
又1>-2+,而-1<-2+,
所以-1符合要求,
綜上所述,滿足的實(shí)數(shù)a的范圍是{x|x=-1或x≥-2+}。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(cosx,1-asinx),
n
=(cosx,2),設(shè)f(x)=
m
n
,且函數(shù)f(x)的最大值為g(a).
(Ⅰ)求函數(shù)g(a)的解析式.
(Ⅱ)設(shè)0≤θ≤2π,求函數(shù)(2cosθ+1)的最大值和最小值以及對(duì)應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是偶函數(shù),且當(dāng)x≥0時(shí),f(x)=
x(3-x)       ,0≤x≤3
(x-3)(a-x)      ,x>3

(1)當(dāng)x<0時(shí),求f(x)的解析式;
(2)設(shè)函數(shù)f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達(dá)式;
(3)若方程f(x)=m有四個(gè)不同的實(shí)根,且它們成等差數(shù)列,試探求a與m滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a
1-x2
+
1+x
+
1-x
的最大值為g(a).
(1)設(shè)t=
1+x
+
1-x
,求t的取值范圍;
(2)用第(1)問(wèn)中的t作自變量,把f(x)表示為t的函數(shù)m(t);
(3)求g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=a
1-x2
+
1+x
+
1-x
的最大值為g(a).
(1)求函數(shù)f(x)的定義域;
(2)設(shè)t=
1+x
+
1-x
,把函數(shù)f(x)表示為t的函數(shù)h(t),并寫出定義域;
(3)求g(a),并求當(dāng)a>-
1
2
時(shí)滿足g(a)=g(
1
a
)
的實(shí)數(shù)a的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案