求函數(shù)y=
x2-2x
x2-2x+3
的值域.
考點:函數(shù)的值域
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:本題考查二次了二次函數(shù)解析式的配方,求值域,分離常法求函數(shù)的值域.
解答: 解:y=
x2-2x+3-3
x2-2x+3
=1-
3
x2-2x+3
=1-
3
(x-1)2+2

∵(x-1)2+2≥2
1
(x-1)2+2
∈(0,
1
2
]
,∴y∈[
1
2
,1)

所以函數(shù)的值域為[-
1
2
,1)
點評:本題運用分離常數(shù)法求含有分式函數(shù)的值域,注意自變量的取值范圍,這是一種?嫉念}型,應(yīng)該引起注意,在計算過程中容易出錯,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若向量
a
b
是兩個互相垂直的單位向量,則向量
a
-
3
b
在向量
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、4
3
B、
8
3
3
C、
4
3
3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,點P到兩點(
2
,0),(-
2
,0)
的距離之和等于4,設(shè)點P的軌跡為C,直線y=kx+1與C交于A,B兩點.
(1)線段AB的長是3,求實數(shù)k;
(2)(理)若點A在第四象限,當k<0時,判斷|
OA
|與|
OB
|的大小,并證明.
     (文)求證:
OA
OB
<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓Γ:
x2
4
+y2=1

(1)橢圓Γ的短軸端點分別為A,B(如圖),直線AM,BM分別與橢圓Γ交于E,F(xiàn)兩點,其中點(m,
1
2
)滿足滿足m≠0,且m≠±
3

①用m表示點E,F(xiàn)的坐標;
②若△BME面積是△AMF面積的5倍,求m的值;
(2)若圓φ:x2+y2=4.l1,l2是過點P(0,-1)的兩條互相垂直的直線,其中l(wèi)1交圓φ于T、R兩點,l2交橢圓Γ于另一點Q.求△TRQ面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB=BB1=1,AC=
2
,直線B1C與平面ABC成45°角.
(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐P-ABCD中,底面ABCD是邊長為2a的菱形,∠BAD=60°,側(cè)棱PA⊥平面ABCD,且PA=
3
a,求:
(1)二面角P-BD-A的大;
(2)點A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,∠B=60°,b=2,a=x,如c有兩組解,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題
①平行于y軸的直線不能用點方向式表示;
②平行于y軸的直線不能用點法向式表示;
③平行于y軸的直線不能用一般式表示;
④平行于y軸的直線不能用點斜式表示;
以上命題中,正確的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案