函數(shù)y=f(x)在x=x0處可導是它在x=x0處連續(xù)的

A.充分不必要條件    B.必要不充分條件

C.充要條件         D.既不充分也不必要條件

 

【答案】

A

【解析】

試題分析:可導必定連續(xù),但連續(xù)不一定可導,故選A.

考點:本題主要考查函數(shù)的導數(shù)與連續(xù)的關系、充要條件的概念。

點評: 簡單題,明確可導與連續(xù)的關系。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)的導數(shù)y=f′(x)的圖象如圖所示,下列說法正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

冪指函數(shù)y=[f(x)]g(x)在求導時,可運用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得lny=g(x)•lnf(x),兩邊同時求導得
y/
y
=g/(x)lnf(x)+g(x)
f/(x)
f(x)
,于是y′=[f(x)]g(x)[g/(x)lnf(x)+g(x)
f/(x)
f(x)
]
,運用此方法可以探求得知y=x
1
x
的一個單調遞增區(qū)間為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)是定義域為R 的奇函數(shù),且滿足f(x-2)=-f(x)對一切x∈R恒成立,當

-1≤x≤1時,f(x)=x3。則下列四個命題:①f(x)是以4為周期的周期函數(shù);②f(x)在[1,3]上的解析式為f(x)=(2-x)3;③f(x)在處的切線方程為3x+4y-5=0;④f(x)的圖像的對稱軸中有x=±1.其中正確的命題是          (    )

       A.① ② ③    B.② ③  ④     C.① ③ ④       D.① ② ③ ④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)在x=處取得最小值- (t>0),f(1)=0.

(1)求y=f(x)的表達式;

(2)若任意實數(shù)x都滿足等式f(xg(x)+anx+bn=xn+1g(x)]為多項式,n∈N*),試用t表示anbn;

(3)設圓Cn的方程為(xan)2+(ybn)2=rn2,圓CnCn+1外切(n=1,2,3,…);{rn}是各項都是正數(shù)的等比數(shù)列,記Sn為前n個圓的面積之和,求rn、Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的定義域為R,f(0)=1,對于任意的實數(shù)m,n恒有f(m+n)=f(m)·f(n),且當x>0時,0<f(x)<1,f(x)在R上的單調性是

A.f(x)在R上是減函數(shù)                    B.f(x)在R上是增函數(shù)

C.f(x)在R上是奇函數(shù)                    D.f(x)在R上是偶函數(shù)

查看答案和解析>>

同步練習冊答案