定義

   (1)令函數(shù)的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過(guò)坐標(biāo)原點(diǎn)O作曲線C1的切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值。

   (2)當(dāng)

   (3)令函數(shù)的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍。

解:(1)

,故A(0,9)

又過(guò)坐標(biāo)原點(diǎn)O向曲線C1作切線,切點(diǎn)為B(n,t)(n>0),

 

                      

   (2)令,

又令 ,

單調(diào)遞減.

單調(diào)遞減,

,

   (3)

設(shè)曲線處有斜率為-8的切線,

①②③

 
又由題設(shè)

∴存在實(shí)數(shù)b使得     有解,

由①得代入③得

有解,得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對(duì)于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3

③定義:“若函數(shù)f(x)對(duì)于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱(chēng)函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對(duì)于函數(shù)f(x)=
x-1
x+1
,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說(shuō)明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)利用(2)中函數(shù),構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過(guò)程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)無(wú)窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省丹東市高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

下列說(shuō)法中

①  若定義在R上的函數(shù)滿足,則6為函數(shù)的周期;

② 若對(duì)于任意,不等式恒成立,則;

③ 定義:“若函數(shù)對(duì)于任意R,都存在正常數(shù),使恒成立,則稱(chēng)函數(shù)為有界泛函.”由該定義可知,函數(shù)為有界泛函;

④對(duì)于函數(shù) 設(shè),,…,),令集合,則集合為空集.正確的個(gè)數(shù)為

A.1個(gè)             B.2個(gè)              C.3個(gè)              D.4個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說(shuō)明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)數(shù)學(xué)公式在D2上封閉?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)利用(2)中函數(shù),構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過(guò)程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)無(wú)窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對(duì)于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
③定義:“若函數(shù)f(x)對(duì)于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱(chēng)函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對(duì)于函數(shù)f(x)=
x-1
x+1
,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案