【題目】某工廠每年定期對職工進(jìn)行培訓(xùn)以提高工人的生產(chǎn)能力(生產(chǎn)能力是指一天加工的零件數(shù)).現(xiàn)有、兩類培訓(xùn),為了比較哪類培訓(xùn)更有利于提高工人的生產(chǎn)能力,工廠決定從同一車間隨機抽取100名工人平均分成兩個小組分別參加這兩類培訓(xùn).培訓(xùn)后測試各組工人的生產(chǎn)能力得到如下頻率分布直方圖.
(1)記表示事件“參加類培訓(xùn)工人的生產(chǎn)能力不低于130件”,估計事件的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為工人的生產(chǎn)能力與培訓(xùn)類有關(guān):
生產(chǎn)能力件 | 生產(chǎn)能力件 | 總計 | |
類培訓(xùn) | 50 | ||
類培訓(xùn) | 50 | ||
總計 | 100 |
(3)根據(jù)頻率分布直方圖,判斷哪類培訓(xùn)更有利于提高工人的生產(chǎn)能力,請說明理由.
參考數(shù)據(jù)
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中.
【答案】(1) (2)見解析;(3)見解析
【解析】
(1)由頻率分布直方圖用頻率估計概率,求得對應(yīng)的頻率值,用頻率估計概率即可;
(2)根據(jù)題意填寫列聯(lián)表,計算觀測值,對照臨界值得出結(jié)論;
(3)根據(jù)頻率分布直方圖,判斷、類生產(chǎn)能力在130以上的頻率值,比較得出結(jié)論.
解:(1)由頻率分布直方圖,用頻率估計概率得,所求的頻率為,
估計事件的概率為;
(2)根據(jù)題意填寫列聯(lián)表如下,
類培訓(xùn)生產(chǎn)能力件的人數(shù)為,
類培訓(xùn)生產(chǎn)能力件的人數(shù)為,
類培訓(xùn)生產(chǎn)能力件的人數(shù)為,
類培訓(xùn)生產(chǎn)能力件的人數(shù)為,
生產(chǎn)能力件 | 生產(chǎn)能力件 | 總計 | |
類培訓(xùn) | 36 | 50 | |
類培訓(xùn) | 12 | 38 | 50 |
總計 | 48 | 52 | 100 |
由列聯(lián)表計算,
所以有的把握認(rèn)為工人的生產(chǎn)能力與培訓(xùn)類有關(guān);
(3)根據(jù)頻率分布直方圖知,類生產(chǎn)能力在130以上的頻率為0.28,
類培訓(xùn)生產(chǎn)能力在130以上的頻率為0.76,
判斷類培訓(xùn)更有利于提高工人的生產(chǎn)能力.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且拋物線的焦點恰好是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作直線與橢圓交于,兩點,點滿足(為坐標(biāo)原點),求四邊形面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點分別為、,過的直線交橢圓于,兩點,若橢圓的離心率為,的周長為16.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過橢圓的中心而平行于弦的直線交橢圓于點,,設(shè)弦,的中點分別為,.證明:,,三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點的切線方程為.
(1)求實數(shù)的值,并求的極值.
(2)是否存在,使得對任意恒成立?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下關(guān)于圓錐曲線的命題中:①雙曲線與橢圓有相同的焦點;②設(shè)、是兩個定點,為非零常數(shù),若,則動點的軌跡為雙曲線的一支;③設(shè)點、分別是定圓上一個定點和動點,為坐標(biāo)原點,若,則動點的軌跡為圓;其中真命題是_________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進(jìn)行統(tǒng)計,得到頻率分布直方圖如圖1.
附注:①對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,;
②參考數(shù)據(jù):,,,,.
(Ⅰ)記“在2017年成交的二手車中隨機選取一輛,該車的使用年限在”為事件,試估計的概率;
(Ⅱ)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;
②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓兩焦點,并經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓上關(guān)于軸對稱的不同兩點,為軸上兩點,且,證明:直線的交點仍在橢圓上;
(3)你能否將(2)推廣到一般橢圓中?寫出你的結(jié)論即可.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)一種畫橢圓的工具如圖1所示.是滑槽的中點,短桿ON可繞O轉(zhuǎn)動,長桿MN通過N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動,且,.當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運動時,帶動N繞轉(zhuǎn)動,M處的筆尖畫出的橢圓記為C.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)動直線與兩定直線和分別交于兩點.若直線總與橢圓有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com