已知直線a、b,平面α、β,那么下列命題中正確的是( 。
A、若a?α,b?β,a⊥b,則α⊥β
B、若a?α,b?β,a∥b,則α∥β
C、若a∥α,a⊥b,則b⊥α
D、若a∥α,a⊥β,則α⊥β
考點:空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:若a?α,b?β,a⊥b,則α與β相交或平行,故A錯誤;
若a?α,b?β,a∥b,則α與β相交或平行,故B錯誤;
若a∥α,a⊥b,則b與α相交、平行或b?α,故C錯誤;
若a∥α,a⊥β,則由平面與平面垂直的判定定理知α⊥β,故D正確.
故選:D.
點評:本題考查命題真假的判斷,是基礎(chǔ)題,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

-
1
2
+
2
22
-
3
23
+…+(-1)n
n
2n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四邊形ABCD中,
AB
=
DC
=(1,1),
1
|
BA
|
BA
+
1
|
BC
|
BC
=
3
|
BD
|
BD
,則四邊形ABCD的面積為(  )
A、
3
B、2
3
C、
6
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
A、三角形的中位線平行且等于第三邊
B、對角線相等的四邊形是等腰梯形
C、四條邊都相等的四邊形是菱形
D、相等的角是對頂角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面內(nèi)的兩條相交直線OP1和OP2將該平面分割成四個部分Ⅰ、Ⅱ、Ⅲ、Ⅳ
(不包含邊界),設(shè)
OP
=m
OP1
+n
OP2
,且點P落在第Ⅳ部分,則實數(shù)m、n滿足( 。
A、m>0,n>0
B、m>0,n<0
C、m<0,n>0
D、m<0,n<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式f(x)=
3
sin
x
4
cos
x
4
+cos2
x
4
-
1
2
-m≤0對于任意的-
6
≤x≤
π
6
恒成立,則實數(shù)m的取值范圍是( 。
A、m≥
2
2
B、m≤
2
2
C、m≤-
2
2
D、-
2
2
≤m≤
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且
b
a+b-c
=
a+c
a+b

(I)求角A;
(Ⅱ)若a=15,b=10,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且過點(-
2
6
3
,1).
(1)求橢圓E的方程;
(2)過橢圓的右焦點F作兩條直線分別與橢圓交于A,C與B,D,若
AC
BD
=0,求四邊形ABCD面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項a1=1的等比數(shù)列,其前n項和為Sn,且S3,S2,S4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)若bn=log2|an|,(n∈N+),設(shè)Tn為數(shù)列{
bn+1
|an|
}的前n項和,求證:Tn<4.

查看答案和解析>>

同步練習(xí)冊答案