【題目】已知函數(shù).

(Ⅰ)求的極值;

(Ⅱ)若函數(shù)的圖像與函數(shù)的圖像在區(qū)間上有公共點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)極小值為,無(wú)極大值.(2)

【解析】試題分析:(Ⅰ)函數(shù)求導(dǎo),令,求出根,分析其兩側(cè)導(dǎo)數(shù)的符號(hào),確定函數(shù)的極值;(Ⅱ)若函數(shù)的圖象與函數(shù)的圖象在區(qū)間上有公共點(diǎn),轉(zhuǎn)化為求函數(shù)在區(qū)間上的值域,根據(jù)(Ⅰ)分類(lèi)討論函數(shù)在區(qū)間是的單調(diào)性,確定函數(shù)的最值.

試題解析:

(1)函數(shù)的定義域?yàn)?/span>, ,令,得

當(dāng)時(shí), , 是減函數(shù);

當(dāng)時(shí), , 是增函數(shù).

所以當(dāng)時(shí), 取得極小值,即極小值為,無(wú)極大值.

(2)①當(dāng),即時(shí),由(1)知, 上是減函數(shù),在上增函數(shù),當(dāng)時(shí), 取得最小值,即最小值,又當(dāng)時(shí), ,當(dāng)時(shí), ,當(dāng)時(shí), ,所以的圖像與函數(shù)的圖像在區(qū)間上有公共點(diǎn),等價(jià)于,解得,又,所以.

②當(dāng),即時(shí), 上是減函數(shù), 上的最小值為,所以,原問(wèn)題等價(jià)于,得,又,所以不存在這樣的實(shí)數(shù).綜上知實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位職工義務(wù)獻(xiàn)血,在體檢合格的人中, 型血的共有28人, 型血的共有7人, 型血的共有9人, 型血的有3人.

(1)從中任選1人去獻(xiàn)血,有多少種不同的選法?

(2)從四種血型的人中各選1人去獻(xiàn)血,有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年部組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示.

(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);

(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績(jī)?cè)?/span>段各不相同,且都超過(guò)94分.若將頻率視為概率,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績(jī)的次數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2015高考湖北如圖,圓C與x軸相切于點(diǎn)T(1,0),與y軸正半軸交于兩點(diǎn)A,B(B在A的上方),且|AB|=2.

(1)圓C的標(biāo)準(zhǔn)方程為_(kāi)_______.

(2)過(guò)點(diǎn)A任作一條直線(xiàn)與圓O:x2+y2=1相交于M,N兩點(diǎn),下列三個(gè)結(jié)論:

;②=2;

=2.

其中正確結(jié)論的序號(hào)是________(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (x∈R),給出下面四個(gè)命題:
①函數(shù)f(x)的圖象一定關(guān)于某條直線(xiàn)對(duì)稱(chēng);
②函數(shù)f(x)在R上是周期函數(shù);
③函數(shù)f(x)的最大值為
④對(duì)任意兩個(gè)不相等的實(shí)數(shù) ,都有 成立.
其中所有真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ).

(Ⅰ)求函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知pq為常數(shù), ),又, .

1)求p、q的值;

2)求數(shù)列的通項(xiàng)公式;

3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(duì);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中, 分別是的中點(diǎn).

1)證明:平面平面;

2上是否存在點(diǎn),使平面?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn)

(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端

時(shí)即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時(shí)甲乙兩人之間的距離;

(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請(qǐng)將甲

乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案