已知直線(xiàn)l交橢圓4x2+5y2=80于M、N兩點(diǎn),橢圓與y軸的正半軸交于B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線(xiàn)l的方程是(    )       

A. 6x-5y-28=0   B. 6x+5y-28=0    

C. 5x+6y-28=0    D. 5x-6y-28=0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形,直線(xiàn)x-y+b=0是拋物線(xiàn)y2=4x的一條切線(xiàn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)S(0,
1
3
)的動(dòng)直線(xiàn)L交橢圓C于A、B兩點(diǎn).問(wèn):是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T?若存在,求點(diǎn)T坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形,且直線(xiàn)x-y+b=0是拋物線(xiàn)y2=4x的一條切線(xiàn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)S (0, -
1
2
)
且斜率為1的直線(xiàn)l交橢圓C于M、N兩點(diǎn),求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1 (a>b>0)
的離心率e滿(mǎn)足3, 
1
e
, 
4
9
成等比數(shù)列,且橢圓上的點(diǎn)到焦點(diǎn)的最短距離為2-
3
.過(guò)點(diǎn)(2,0)作直線(xiàn)l交橢圓于點(diǎn)A,B.
(1)若AB的中點(diǎn)C在y=4x(x≠0)上,求直線(xiàn)l的方程;
(2)設(shè)橢圓中心為,問(wèn)是否存在直線(xiàn)l,使得的面積滿(mǎn)足2S△AOB=|OA|•|OB|?若存在,求出直線(xiàn)AB的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線(xiàn)C1:y2=-4x的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)F2的直線(xiàn)l交橢圓C于D,E兩點(diǎn),且2
DF2
=
F2E
,點(diǎn)E關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為G,求直線(xiàn)GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F2與拋物線(xiàn)y2=4x的焦點(diǎn)重合,過(guò)F2作與x軸垂直的直線(xiàn)交橢圓于S,T兩點(diǎn),交拋物線(xiàn)于C,D兩點(diǎn),且
|CD|
|ST|
=2
2

(I)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)Q(2,0),過(guò)點(diǎn)(-1,0)的直線(xiàn)l交橢圓E于M、N兩點(diǎn).
(i)當(dāng)
QM
QN
=
19
3
時(shí),求直線(xiàn)l的方程;
(ii)記△QMN的面積為S,若對(duì)滿(mǎn)足條件的任意直線(xiàn)l,不等式S>λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案