(本小題滿分14分)
一種計算裝置,有一數(shù)據(jù)入口點A和一個運算出口點B ,按照某種運算程序:
①當(dāng)從A口輸入自然數(shù)1時,從B口得到 ,記為;
當(dāng)從A口輸入自然數(shù)時,在B口得到的結(jié)果是前一個結(jié)果倍;
試問:當(dāng)從A口分別輸入自然數(shù)2 ,3 ,4 時,從B口分別得到什么數(shù)?試猜想的關(guān)系式,并證明你的結(jié)論。
,證明見解析。

由已知得 
當(dāng)時,,
同理可得  ---------------------4分
猜想 -------------------6分
下面用數(shù)學(xué)歸納法證明成立
①當(dāng)時,由上面的計算結(jié)果知成立   ------8分
②假設(shè)時,成立,即 ,
那么當(dāng)時,
         
當(dāng)時,也成立      ---------------13分
綜合①②所述,對 ,成立。-----14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分) 函數(shù)列滿足,=。
(1)求;
(2)猜想的解析式,并用數(shù)學(xué)歸納法證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)f(n)=1+,當(dāng)n≥2,nN*時,用數(shù)學(xué)歸納法證明:n+f(1)+f(2)+…+f(n-1)=nf(n)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前項和,先計算數(shù)列的前4項,后猜想并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某個與自然數(shù)有關(guān)的命題:如果當(dāng)n=k()時,命題成立,則可以推出n=k+1時,該命題也成立.現(xiàn)已知n=6時命題不成立(   ).
A.當(dāng)n=5時命題不成立 B.當(dāng)n=7時命題不成立
C.當(dāng)n=5時命題成立 D.當(dāng)n=8時命題成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)設(shè),其中為正整數(shù).
(1)求,的值;
(2)猜想滿足不等式的正整數(shù)的范圍,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(不等式選講)
用數(shù)學(xué)歸納法證明不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明,在驗證成立時,左邊計算所得的項是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,,,則第5個等式為         ,…,推廣到第個等式為__                  _;(注意:按規(guī)律寫出等式的形式,不要求計算結(jié)果.)

查看答案和解析>>

同步練習(xí)冊答案