分析 (1)若不論k取何值,直線l與圓M總有兩個(gè)不同的交點(diǎn),則(0,b)點(diǎn)在圓M:x2+y2-2x-4=0的內(nèi)部,進(jìn)而得到b的取值范圍;
(2)b=1時(shí),l必過(guò)(0,1)點(diǎn),當(dāng)l過(guò)圓心時(shí),|AB|取最大值,當(dāng)l和過(guò)(0,1)的直徑垂直時(shí),|AB|取最小值.
解答 解:(1)若不論k取何值,直線l與圓M總有兩個(gè)不同的交點(diǎn),
則(0,b)點(diǎn)在圓M:x2+y2-2x-4=0的內(nèi)部,
即b2-4<0,
解得:-2<b<2;
(2)當(dāng)b=1時(shí),l必過(guò)(0,1)點(diǎn),
當(dāng)l過(guò)圓心時(shí),|AB|取最大值,即圓的直徑,
由M:x2+y2-2x-4=0的半徑r=$\sqrt{5}$,
故|AB|的最大值為2$\sqrt{5}$,
當(dāng)l和過(guò)(0,1)的直徑垂直時(shí),|AB|取最小值.
此時(shí)圓心M(1,0)到(0,1)的距離d=$\sqrt{2}$,
|AB|=2$\sqrt{{r}^{2}-bhyzm97^{2}}$=2$\sqrt{3}$,
故|AB|的最小值為2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,轉(zhuǎn)化思想,將直線l與圓M總有兩個(gè)不同的交點(diǎn),化為(0,b)點(diǎn)在圓M:x2+y2-2x-4=0的內(nèi)部,是解答的(1)的關(guān)鍵;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 如果直線l垂直于平面α內(nèi)的無(wú)數(shù)條直線,那么l⊥α | |
B. | 如果直線1平行于平面α內(nèi)的無(wú)數(shù)條直線,那么l∥α | |
C. | 過(guò)空間一點(diǎn)有且只有一條直線平行于已知平面 | |
D. | 過(guò)空間一點(diǎn)有且只有一條直線垂直于已知平面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在第二象限 | B. | 在第三象限 | C. | 在第四象限 | D. | 在第一象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com