設(shè)x、y∈R+,S=x+y,P=xy,以下四個(gè)命題:
①若P為定值m,則S有最大值2;
②若S=P,則P有最大值4;
③若S=P,則S有最小值4;
④若S2≥kP總成立,則k的取值范圍為k≤4.
其中正確的是
③④
②④
②③
①④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:志鴻系列訓(xùn)練必修一數(shù)學(xué)北師版 題型:013
設(shè)全集S={(x,y)|x、y∈R},集合M={(x,y)|=1},N={(x,y)|y≠x+1},則(M∪N)等于
A.
B.{(2,3)}
C.(2,3)
D.{(x,y)|y=x+1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:訓(xùn)練必修五數(shù)學(xué)蘇教版 蘇教版 題型:022
設(shè)x、y∈R+,S=x+y,P=xy,以下四個(gè)命題中正確命題的序號(hào)是________.(把你認(rèn)為正確的命題序號(hào)都填上)
①若P為定值m,則S有最大值;②若S=P,則P有最大值4;③若S=P,則S有最小值4;④若S2≥kP總成立,則k的取值范圍為k≤4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知橢圓C1:的離心率為,直線l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l2過點(diǎn)F價(jià)且垂直于橢圓的長軸,動(dòng)直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(III)過橢圓C1的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設(shè)所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應(yīng)給分
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com