【題目】給出如下四對(duì)事件:
①某人射擊1次,“射中7環(huán)”與“射中8環(huán)”;
②甲、乙兩人各射擊1次,“至少有1人射中目標(biāo)”與“甲射中,但乙未射中目標(biāo)”;
③從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,“至少一個(gè)黑球”與“都是紅球”;
④從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,“沒有黑球”與“恰有一個(gè)紅球”;
其中屬于互斥事件的是 . (把你認(rèn)為正確的命題的序號(hào)都填上)

【答案】①③④
【解析】解:某人射擊1次,“射中7環(huán)”與“射中8環(huán)”,這兩個(gè)事件不可能同時(shí)發(fā)生,故①是互斥事件;
甲、乙兩人各射擊1次,“至少有1人射中目標(biāo)”與“甲射中,但乙未射中目標(biāo)”,前者包含后者,故②不是互斥事件;
從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,“至少一個(gè)黑球”與“都是紅球”,這兩個(gè)事件不可能同時(shí)發(fā)生,故③是互斥事件;
從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,“沒有黑球”與“恰有一個(gè)紅球”,這兩個(gè)事件不可能同時(shí)發(fā)生,故④是互斥事件;
所以答案是:①③④.
【考點(diǎn)精析】本題主要考查了互斥事件與對(duì)立事件的相關(guān)知識(shí)點(diǎn),需要掌握互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生;而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“現(xiàn)代五項(xiàng)”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動(dòng)項(xiàng)目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項(xiàng)運(yùn)動(dòng).已知甲、乙、丙共三人參加“現(xiàn)代五項(xiàng)”.規(guī)定每一項(xiàng)運(yùn)動(dòng)的前三名得分都分別為a,b,c(a>b>c且a,b,c∈N*),選手最終得分為各項(xiàng)得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是(
A.甲
B.乙
C.丙
D.乙和丙都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班有50名學(xué)生,一次數(shù)學(xué)考試的成績(jī)?chǔ)畏䦶恼龖B(tài)分布N(110,102),已知P(100≤ξ≤110)=0.36,估計(jì)該班學(xué)生數(shù)學(xué)成績(jī)?cè)?20分以上的有人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題“x∈R,x2+1≥1”的否定是(
A.x∈R,x2+1<1
B.x∈R,x2+1≤1
C.x∈R,x2+1<1
D.x∈R,x2+1≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】歐拉(Leonhard Euler,國(guó)籍瑞士)是科學(xué)史上最多產(chǎn)的一位杰出的數(shù)學(xué)家,他發(fā)明的公式eix=cosx+isinx(i為虛數(shù)單位),將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,這個(gè)公式在復(fù)變函數(shù)理論中占用非常重要的地位,被譽(yù)為“數(shù)學(xué)中的天橋”,根據(jù)此公式可知,e4i表示的復(fù)數(shù)在復(fù)平面中位于(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用三段論推理:“任何實(shí)數(shù)的絕對(duì)值大于0,因?yàn)閍是實(shí)數(shù),所以a的絕對(duì)值大于0”,你認(rèn)為這個(gè)推理(
A.大前提錯(cuò)誤
B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤
D.是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高一有400人,高二有320人,高三有280人,用簡(jiǎn)單隨機(jī)抽樣方法抽取一個(gè)容量為n的樣本,已知每個(gè)人被抽取到的可能性大小為0.2,則n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=loga(2﹣ax)在(﹣1,1)上是x的減函數(shù),則a的取值范圍是(
A.(0,2)
B.(1,2)
C.(1,2]
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x+1)=x2﹣1,則(
A.f(x)=x2﹣2x
B.f(x)=x2+2x
C.f(x)=x2﹣4x
D.f(x)=x2+4x

查看答案和解析>>

同步練習(xí)冊(cè)答案