【題目】如圖,直線與拋物線交于兩點(diǎn),線段的垂直平分線與直線交于點(diǎn),當(dāng)為拋物線上位于線段下方(含)的動(dòng)點(diǎn)時(shí),則面積的最大值為______.
【答案】30
【解析】
把直線方程拋物線方程聯(lián)立求得交點(diǎn),的坐標(biāo),則中點(diǎn)的坐標(biāo)可得,利用的斜率推斷出垂直平分線的斜率,進(jìn)而求得垂直平分線的方程,把代入求得的坐標(biāo);設(shè)出的坐標(biāo),利用到直線的距離求得三角形的高,利用兩點(diǎn)間的距離公式求得的長(zhǎng),最后利用三角形面積公式表示出三角形,利用的范圍和二次函數(shù)的單調(diào)性求得三角形面積的最大值.
直線與拋物線聯(lián)立,得到,,
從而的中點(diǎn)為,
由,直線的垂直平分線方程.
令,得,
.
直線的方程為,設(shè).
點(diǎn)到直線的距離,,
,
為拋物線上位于線段下方的點(diǎn),且不在直線上,
或.
函數(shù)在區(qū)間,上單調(diào)遞增,
當(dāng)時(shí),的面積取到最大值30.
故答案為:30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上單調(diào)遞減,且滿足, (Ⅰ) 求的取值范圍;(Ⅱ)設(shè),求在上的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:某企業(yè)某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,從該企業(yè)生產(chǎn)的這種產(chǎn)品(數(shù)量很大)中抽取100件,測(cè)量這100件產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖求平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若取這100件產(chǎn)品指標(biāo)的平均值,從這種產(chǎn)品(數(shù)量很大)中任取3個(gè),求至少有1個(gè)落在區(qū)間的概率.
參考數(shù)據(jù):,若,則;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè).
(1)若,且為函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,且函數(shù)的圖象恒在軸下方,其中是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體中,四邊形為菱形,且,為的中點(diǎn).
(1)求證:平面;
(2)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦《國(guó)學(xué)》知識(shí)問(wèn)答中,有一道題目有5個(gè)選項(xiàng)A,B,C,D,E,并告知考生正確選項(xiàng)個(gè)數(shù)不超過(guò)3個(gè),滿分5分,若該題正確答案為,賦分標(biāo)準(zhǔn)為“選對(duì)1個(gè)得2分,選對(duì)2個(gè)得4分,選對(duì)3個(gè)得5分,每選錯(cuò)1個(gè)扣3分,最低得分為0分”.假定考生作答的答案中的選項(xiàng)個(gè)數(shù)不超過(guò)3個(gè).
(1)若張小雷同學(xué)無(wú)法判斷所有選項(xiàng),只能猜,他在猶豫答案是“任選1個(gè)選項(xiàng)作為答案”或者“任選2個(gè)選項(xiàng)作為答案”或者“任選3個(gè)選項(xiàng)作為答案”,以得分期望為決策依據(jù),則他的最佳方案是哪一種?說(shuō)明理由.
(2)已知有10名同學(xué)的答案都是3個(gè)選項(xiàng),且他們的答案互不相同,他們此題的平均得分為x分.現(xiàn)從這10名同學(xué)中任選3名,計(jì)算得到這3名考生此題得分的平均分為y分,試求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)M的極坐標(biāo)為,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若N是曲線C上的動(dòng)點(diǎn),P為線段MN的中點(diǎn),求點(diǎn)P到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:上的點(diǎn)到焦點(diǎn)的距離最小值為1.
(1)求的值;
(2)若點(diǎn)在曲線:上,且在曲線上存在三點(diǎn),,,使得四邊形為平行四邊形.求平行四邊形的面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com