16.誠信是立身之本,道德之基,某校學(xué)生會創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進誠信教育,并用“$\frac{周實際回收水費}{周投入成本}$”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:
 第一周  第二周第三周  第四周
 第一個周期 95% 98% 92% 88%
 第二個周期 94% 94% 83% 80%
 第三個周期 85%92%  95%96% 
(1)計算表中十二周“水站誠信度”的平均數(shù)$\overline{x}$;
(2)分別從表中每個周期的4個數(shù)據(jù)中隨機抽取1個數(shù)據(jù),設(shè)隨機變量X表示取出的3個數(shù)據(jù)中“水站誠信度”超過91%的數(shù)據(jù)的個數(shù),求隨機變量X的分布列和期望;
(3)已知學(xué)生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.

分析 (1)利用平均數(shù)公式能求出表中十二周“水站誠信度”的平均數(shù).
(2)隨機變量X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
(3)兩次活動效果均好,活動舉辦后,“水站誠信度”由88%→94%和80%到85%看出,后繼一周都有提升.

解答 解:(1)表中十二周“水站誠信度”的平均數(shù):
$\overline{x}$=$\frac{95+98+92+88+94+94+83+80+85+92+95+96}{12}$×$\frac{1}{100}$=91%.
(2)隨機變量X的可能取值為0,1,2,3,
P(X=0)=$\frac{1}{4}×\frac{2}{4}×\frac{1}{4}$=$\frac{2}{64}$,
P(X=1)=$\frac{3}{4}×\frac{2}{4}×\frac{1}{4}+\frac{1}{4}×\frac{2}{4}×\frac{1}{4}+\frac{1}{4}×\frac{2}{4}×\frac{3}{4}$=$\frac{14}{64}$,
P(X=2)=$\frac{3}{4}×\frac{2}{4}×\frac{1}{4}+\frac{3}{4}×\frac{2}{4}×\frac{1}{4}+\frac{3}{4}×\frac{2}{4}×\frac{3}{4}=\frac{30}{64}$,
P(X=3)=$\frac{3}{4}×\frac{2}{4}×\frac{3}{4}=\frac{18}{64}$,
∴X的分布列為:

 X 0 1 2 3
 P $\frac{1}{32}$ $\frac{7}{32}$ $\frac{15}{32}$ $\frac{9}{32}$
EX=$0×\frac{1}{32}+1×\frac{7}{32}+2×\frac{15}{32}+3×\frac{9}{32}$=2.
(3)兩次活動效果均好.
理由:活動舉辦后,“水站誠信度”由88%→94%和80%到85%看出,
后繼一周都有提升.

點評 本題考查平均數(shù)的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要 認真審題,在歷年高考中都是必考題型之一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.經(jīng)過點A(3,2),且與直線x-y+3=0平行的直線方程是( 。
A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有一批數(shù)量很大的商品的次品率為1%,從中任意地連續(xù)取出200件商品,設(shè)其中次品數(shù)為X,則E(X)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=5,|$\overrightarrow$|=3,$\overrightarrow{a}$•$\overrightarrow$=-3,則$\overrightarrow{a}$在$\overrightarrow$的方向上的投影是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)當(dāng)m=2時,求函數(shù)f(x)的極值;
(2)設(shè)t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3對任意的m∈(4,6)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓的中心在原點,離心率e=$\frac{1}{2}$,且它的一個焦點與拋物線y2=-8x的焦點重合,則此橢圓方程為( 。
A.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1B.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{8}$+y2=1D.$\frac{{x}^{2}}{4}$+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.甲,乙,丙,丁4名學(xué)生按任意次序站成一排,則事件“甲站在兩端”的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若點P(2,0)到雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一條漸近線的距離為1,則a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知在空間四邊形ABCD中,$\overrightarrow{AB}=\vec a$,$\overrightarrow{BC}=\vec b$,$\overrightarrow{AD}=\vec c$,則$\overrightarrow{CD}$=( 。
A.$\vec a+\vec b-\vec c$B.$\vec c-\vec a-\vec b$C.$\vec c+\vec a-\vec b$D.$\vec a+\vec b+\vec c$

查看答案和解析>>

同步練習(xí)冊答案