20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點$M(1,\frac{{\sqrt{2}}}{2})$,且其離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)若F為橢圓C的右焦點,橢圓C與y軸的正半軸相交于點B,經(jīng)過點B的直線與橢圓C相交于另一點A,且滿足$\overrightarrow{BA}•\overrightarrow{BF}$=2,求點A的坐標.

分析 (1)根據(jù)橢圓的方程的定義和離心率即可求出;
(2)A(x0,y0),則$\frac{{{x_0}^2}}{2}+{y_0}^2=1$.③$\overrightarrow{BA}•\overrightarrow{BF}=2$,得到x0-(y0-1)=2,④,解得即可.

解答 解:(1)因為橢圓C經(jīng)過點$M(1,\frac{{\sqrt{2}}}{2})$,所以$\frac{1}{a^2}+\frac{1}{{2{b^2}}}=1$.①
因為橢圓C的離心率為$\frac{{\sqrt{2}}}{2}$,所以$\frac{{\sqrt{{a^2}-{b^2}}}}{a}=\frac{{\sqrt{2}}}{2}$,即a2=2b2.②
聯(lián)立①②解得,a2=2,b2=1.所以橢圓C的方程為$\frac{x^2}{2}+{y^2}=1$.
(2)由(1)得,橢圓C的方程為$\frac{x^2}{2}+{y^2}=1$,所以F(1,0),B(0,1).
設(shè)A(x0,y0),則$\frac{{{x_0}^2}}{2}+{y_0}^2=1$.③
因為$\overrightarrow{BA}=({x_0},{y_0}-1),\overrightarrow{BF}=(1,-1)$,且$\overrightarrow{BA}•\overrightarrow{BF}=2$,
所以x0-(y0-1)=2,即y0=x0-1.④
聯(lián)立③④解得,$\left\{\begin{array}{l}{x_0}=0\\{y_0}=-1\end{array}\right.$或$\left\{\begin{array}{l}{x_0}=\frac{4}{3}\\{y_0}=\frac{1}{3}.\end{array}\right.$,所以A(0,-1)或$A(\frac{4}{3},\frac{1}{3})$.

點評 本題是一道直線與圓錐曲線的綜合題,考查求橢圓、圓的方程,考查運算求解能力,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若{$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$}為空間的一組基底,向量$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+m$\overrightarrow{OC}$,$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,則m+λ+μ的值是( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.函數(shù)f(x)=|x-1|+2
(1)求不等式f(x)<4的解集.
(2)若關(guān)于x的不等式f(x)-2m<f(x+3)的解集為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知命題p:?x∈R,x2-5x+6>0,命題q:?α、β∈R,使sin(α+β)=sinα+sinβ,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在銳角△ABC中,a,b,c分別為∠A,∠B,∠所對的邊,若向量$\overrightarrow{m}$=(3,-sinA),$\overrightarrow{n}$=(a,5c),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求$\frac{sin2C}{sin2C+co{s}^{2}C}$的值;
(2)若c=4,且a+b=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≥0)}\\{2(x<0)}\end{array}\right.$,則f(1-2x)>f(x)的解集是( 。
A.(-∞,$\frac{1}{3}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{1}{2}$)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知集合A={x|x2=4},B={x|ax-1=0},若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在下列條件中,可判斷平面α與β平行的是( 。
A.α⊥γ,且β⊥γ
B.m,n是兩條異面直線,且m∥β,n∥β,m∥α,n∥α
C.m,n是α內(nèi)的兩條直線,且m∥β,n∥β
D.α內(nèi)存在不共線的三點到β的距離相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)$f(x)={log_{\frac{1}{2}}}cos(2x-\frac{2}{3}π)$的單調(diào)增區(qū)間為( 。
A.$({kπ+\frac{π}{3},kπ+\frac{7π}{12}})(k∈Z)$B.$({kπ-\frac{π}{6},kπ+\frac{π}{3}})(k∈Z)$
C.$({kπ+\frac{π}{12},kπ+\frac{π}{3}})(k∈Z)$D.$({kπ+\frac{π}{3},kπ+\frac{5π}{6}})(k∈Z)$

查看答案和解析>>

同步練習冊答案