如圖,4×4的方陣共16個(gè)黑點(diǎn)中,中間的4個(gè)點(diǎn)在一個(gè)圓內(nèi),其余的12個(gè)點(diǎn)內(nèi)在圓外,若從這16個(gè)點(diǎn)中任取3個(gè),使之構(gòu)成三角形,且至少有一個(gè)頂點(diǎn)在圓內(nèi)的三角形共有   
【答案】分析:事件“至少有一個(gè)頂點(diǎn)在圓內(nèi)”包括了三個(gè)事件“有一個(gè)點(diǎn)在圓內(nèi)”與“有兩個(gè)點(diǎn)在圓內(nèi)”及“三個(gè)點(diǎn)在圓內(nèi)”,注意到構(gòu)成三角形的條件是三點(diǎn)不共線,由此規(guī)律對(duì)兩個(gè)事件計(jì)數(shù),求得它們的和即為事件“至少有一個(gè)頂點(diǎn)在圓內(nèi)”所包括的基本事件數(shù)
解答:解:由題意事件“至少有一個(gè)頂點(diǎn)在圓內(nèi)”包括了三個(gè)事件“有一個(gè)點(diǎn)在圓內(nèi)”與“有兩個(gè)點(diǎn)在圓內(nèi)”,“三個(gè)點(diǎn)在圓內(nèi)”
先計(jì)算事件“有一個(gè)點(diǎn)在圓內(nèi)”,從圓外的12個(gè)點(diǎn)中取兩個(gè),共有C122=66種取法,三點(diǎn)共線的取法有4種,故總的取法有62種,又圓內(nèi)有四個(gè)點(diǎn),故事件“有一個(gè)點(diǎn)在圓內(nèi)”包括的基本事件數(shù)有62×4=248,
對(duì)于事件“有兩個(gè)點(diǎn)在圓內(nèi)”,從圓外取一個(gè)點(diǎn)有12種取法,滿足三點(diǎn)共線的取法有2種,故任取圓內(nèi)兩點(diǎn),圓外取一點(diǎn),組成的三角形的個(gè)數(shù)為10種,又圓內(nèi)四點(diǎn)取兩個(gè)有C42=6種取法,故事件“有兩個(gè)點(diǎn)在圓內(nèi)”,包含的基本事件數(shù)為10×6=60種
事件“三個(gè)在圓內(nèi)”包括的基本事件數(shù)為C43=4個(gè),
綜上,事件“至少有一個(gè)頂點(diǎn)在圓內(nèi)”的三角形總共有248+60+4=312種
故答案為312
點(diǎn)評(píng):本題考查排列組合及簡單的計(jì)數(shù)問題,解題的關(guān)鍵是正確理解事件至少有一個(gè)頂點(diǎn)在圓內(nèi)的三角形”,將此計(jì)數(shù)問題分為三類計(jì)數(shù),本題考查了分類討論的思想,當(dāng)一個(gè)事件包含的基本事件有較大的區(qū)別時(shí),常采用分類計(jì)數(shù)的辦法計(jì)數(shù),解題時(shí)要注意此技巧的使用,注意分類要分清楚.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省撫州市廣昌一中、崇仁一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

如圖程序的功能是( )

A.計(jì)算1+2+3+4+5
B.計(jì)算1+2+3+4+5+6
C.計(jì)算1×2×3×4×5
D.計(jì)算1×2×3×4×5×6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州市晉江市季延中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第4章 平面向量):4.1 向量的有關(guān)概念(解析版) 題型:解答題

如圖是4×5的矩形(每個(gè)小方格都是正方形)試作出與相等的向量,要求向量的起點(diǎn)和終點(diǎn)都在方格的頂點(diǎn)處.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省紹興市上虞市高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:選擇題

將n2個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使其每行、每列、每條對(duì)角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方.記f(n)為n階幻方對(duì)角線上數(shù)的和,如右圖就是一個(gè)3階幻方,可知f(3)=15.已知將等差數(shù)列:3,4,5,…前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方,則其對(duì)角線上數(shù)的和f(4)等于( )
834
159
672

A.36
B.42
C.34
D.44

查看答案和解析>>

同步練習(xí)冊(cè)答案