在平面直角坐標系xOy中,已知動點M(x,y)和N(-4,y)滿足數(shù)學(xué)公式
(1)求動點M的軌跡C的方程;
(2)若過點D(1,-1)的直線與軌跡交C于A、B兩點,且D為線段AB的中點,求此直線的方程.

解:(1)因M(x,y),N(-4,y),
滿足,所以-4x+y2=0,
即:y2=4x,即為動點M的軌跡C的方程.
(2)由題意得AB與x軸垂直,A(x1,y1),B(x2,y2),
由題設(shè)條件A、B兩點在拋物線上.
y12=4x1,y22=4x2
兩式相減得:y12-y22=4x1-4x2
由中點坐標公式得y1+y2=-2,
∴k=,
所以直線方程為y=-2x+1.
分析:(1)先將條件:““化簡即得動點M的軌跡方程.
(2)設(shè)M(x,y),A(x1,y1),B(x2,y2),由題設(shè)條件A、B兩點在拋物線上.由中點坐標公式得x1+x2=2x,y1+y2=2y所以直線方程為y=-2x+1,由此可知此直線的方程.
點評:求曲線的軌跡方程是解析幾何的兩個基本問題之一 求符合某種條件的動點的軌跡方程,其實質(zhì)就是利用題設(shè)中的幾何條件,用“坐標化”將其轉(zhuǎn)化為尋求變量間的關(guān)系,求曲線的軌跡方程常采用的方法有直接法、定義法、代入法、參數(shù)法.本題是利用的直接法.直接法是將動點滿足的幾何條件或者等量關(guān)系,直接坐標化,列出等式化簡即得動點軌跡方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m),(m∈R)恒有公共點,且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點,圓內(nèi)動點P使|
PA
|
、|
PO
|
|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點Q(-4,3),直線l與圓O交于M、N兩點,試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時直線l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y=-3上,M點滿足
MB
OA
,
MA
AB
=
MB
BA
,M點的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動點,l為C在P點處的切線,求O點到l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知A(1,0),B(0,1),點C在第二象限內(nèi),∠AOC=
6
,且|OC|=2,若
OC
OA
OB
,則λ,μ的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標原點為極點,x軸的正半軸為極軸建立相應(yīng)的極坐標系.在此極坐標系中,若圓C的極坐標方程為ρ=2cosθ,則圓心C到直線l的距離為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點M(3
2
2
),橢圓的離心率e=
2
2
3

(1)求橢圓C的方程;
(2)過點M作兩直線與橢圓C分別交于相異兩點A、B.若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案