(本小題滿(mǎn)分12分)已知函數(shù)

(1)設(shè)a>0,若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

(2)如果當(dāng)x1時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

 

 

【答案】

(1);(2).

 

【解析】(1)先利用導(dǎo)數(shù)求出極值點(diǎn),然后根據(jù)極值點(diǎn)在區(qū)間內(nèi),建立關(guān)于a的不等式,然后解不等式即可解決.

(2)解決本題的關(guān)鍵是把不等式恒成立問(wèn)題轉(zhuǎn)化為恒成立,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求g(x)的最小值,然后滿(mǎn)足即可解決此問(wèn)題.

解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082414542895838956/SYS201208241455073338831421_DA.files/image008.png">,則…………………1分

當(dāng)時(shí),;當(dāng)時(shí),

所以上單調(diào)遞增,在上單調(diào)遞減.

所以處取得極大值.…………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082414542895838956/SYS201208241455073338831421_DA.files/image014.png">在區(qū)間(其中)上存在極值,

所以,解得.…………………6分

(2)不等式,即

設(shè),則.  令,則

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082414542895838956/SYS201208241455073338831421_DA.files/image023.png">,所以,則上單調(diào)遞增.…………………9分

所以得最小值為,從而,

上單調(diào)遞增,所以得最小值為,

所以,解得.…………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿(mǎn)分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿(mǎn)分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程:
(H)已知直線(xiàn)L與雙曲線(xiàn)C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線(xiàn)段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線(xiàn)L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿(mǎn)分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案