(2012•蕪湖二模)給出以下五個命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點P(
π
3
,1),則函數(shù)圖象上過點P的切線斜率等于-
3

③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0,1)上存在零點.
⑤已知向量
a
=(1,-2)
與向量
b
=(1,m)
的夾角為銳角,那么實數(shù)m的取值范圍是(-∞,
1
2

其中正確命題的序號是
②③④
②③④
分析:根據(jù)全稱、特稱命題的否定方法,可判斷①的真假;
根據(jù)已知求出k值,進而求出導(dǎo)數(shù)解析式,代入點的橫坐標(biāo),可判斷②的真假;
根據(jù)直線垂直的充要條件,可斜率積為-1,可判斷③的真假;
根據(jù)零點存在定理可得④的真假
根據(jù)m=-2時兩向量同向,夾角為0,可判斷⑤的真假
解答:解:①錯,命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1≤0”.
②中k•cos
π
3
=1
,∴k=2,∴f(x)=2cosx,∴f'(x)=-2sinx斜率f′(
π
3
)=-2sin
π
3
=-
3
正確
③正確,a=1時,直線y=ax+1和直線y=(a-2)x-1垂直成立,直線y=ax+1和直線y=(a-2)x-1垂直時,斜率積為-1,則
a=1④中f(0)=1>0,f(1)=
1
2
-1<0
∴有零點,正確
⑤錯,m≠-2,當(dāng)m=-2時兩向量同向
故答案為:②③④
點評:本題考查的知識點是命題的真假判斷,熟練掌握相關(guān)的基本概念是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)直線
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)將一個四棱錐的每個頂點染上一種顏色,并使同一條棱上的兩個端點異色,若只有5種顏色可供使用,則不同的染色方法總數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)已知復(fù)數(shù)z=x+yi(x,y∈R),且有
x
1-i
=1+yi
.
z
是z的共軛復(fù)數(shù),那么
1
.
z
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)某省對省內(nèi)養(yǎng)殖場“瘦肉精”使用情況進行檢查,在全省的養(yǎng)殖場隨機抽取M個養(yǎng)殖場的豬作為樣本,得到M個養(yǎng)殖場“瘦肉精”檢測陽性豬的頭數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如下:
分組 頻數(shù) 頻率
[10,15) 10 0.25
[15,20) 24 n
[20,25) m P
[25,30) 2 0.05
合計 M 1
(1)求出表中M,P以及圖中a的值.
(2)若該省有這樣規(guī)模的養(yǎng)殖場240個,試估計該省“瘦肉精”檢測呈陽性的豬的頭數(shù)在區(qū)間[10,15)內(nèi)的養(yǎng)殖場的個數(shù).
(3)在所取樣本中,出現(xiàn)“瘦肉精”呈陽性豬的頭數(shù)不少于20頭的養(yǎng)殖場中任選2個,求至多一個養(yǎng)殖場出現(xiàn)“瘦肉精”陽性豬頭數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)拋物線y=8x2的焦點坐標(biāo)為
(0,
1
32
)
(0,
1
32
)

查看答案和解析>>

同步練習(xí)冊答案