由下面四個圖形中的點(diǎn)數(shù)分別給出了四個數(shù)列的前四項(xiàng),將每個圖形的層數(shù)增加可得到這四個數(shù)列的后繼項(xiàng).按圖中多邊形的邊數(shù)依次稱這些數(shù)列為“三角形數(shù)列”、“四邊形數(shù)列”…,將構(gòu)圖邊數(shù)增加到n可得到“n邊形數(shù)列”,記它的第r項(xiàng)為P(n,r),

(1)求使得P(3,r)>36的最小r的取值;
(2)問3725是否為“五邊形數(shù)列”中的項(xiàng),若是,為第幾項(xiàng);若不是,說明理由;
(3)試推導(dǎo)P(n,r)關(guān)于n、r的解析式.
考點(diǎn):歸納推理
專題:推理和證明
分析:(1)由已知可得P(3,r)=
r(r+1)
2
,解不等式可得最小r的取值;
(2)“五邊形數(shù)列”中的項(xiàng),P(5,r)=r+
3r(r-1)
2
,令r+
3r(r+1)
2
=3725,判斷方程是否有正整數(shù)解,可得答案.
(3)設(shè)n邊形數(shù)列所對應(yīng)的圖形中第r層的點(diǎn)數(shù)為a1,則P(n,r)=a1+a2+…+ar,進(jìn)而由等差數(shù)列的前n項(xiàng)和公式,可得答案.
解答: 解:(1)由題意得:P(3,r)=
r(r+1)
2

r(r+1)
2
>36,
即r2+r-72>0,
解得r>8,
∴最小的r=9.
(2)“五邊形數(shù)列”中的項(xiàng),P(5,r)=r+
3r(r-1)
2
,
令r+
3r(r+1)
2
=3725,此方程無正整數(shù)解,
故3725不是“五邊形數(shù)列”中的項(xiàng),
(3)設(shè)n邊形數(shù)列所對應(yīng)的圖形中第r層的點(diǎn)數(shù)為a1,
則P(n,r)=a1+a2+…+ar,
從圖中可以得出:后一層的點(diǎn)在n-2條邊上增加了一點(diǎn),兩條邊上的點(diǎn)數(shù)不變,
所以ar+1-ar=n-2,a1=1
所以{ar}是首項(xiàng)為1公差為n-2的等差數(shù)列,
所以P(n,r)=r+
(n-2)•r•(r-1)
2
點(diǎn)評:本題考查等差數(shù)列的基本知識,遞推數(shù)列的通項(xiàng)公式的求解等基本方法,考察抽象概括能力以及推理論證能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
5
=1的兩個焦點(diǎn)為F1、F2,點(diǎn)P是橢圓上任意一點(diǎn)(非左右頂點(diǎn)),在△PF1F2的周長為( 。
A、6B、8C、10D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a2、a5是方程x2-12x+27=0的兩根,數(shù)列{an}是遞增的等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=1-
1
2
bn(n∈N+).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={X∈N|X≤5},B={2,3,6},則A∩B=( 。
A、{2,3,6}
B、{1,2,3,4,5}
C、{2,3}
D、{0,1,2,3,4,5,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=
1
2-|x|
+
x2-1
的定義域;
(2)求函數(shù)y=-x2+4x-2,x∈[0,3)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為征求個人所得稅法修改建議,某機(jī)構(gòu)對當(dāng)?shù)鼐用竦脑率杖胝{(diào)查10000人,根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500)),因操作人員不慎,未標(biāo)出第五組頂部對應(yīng)的縱軸數(shù)據(jù).
(Ⅰ)請你補(bǔ)上第五組頂部對應(yīng)的縱軸數(shù)據(jù),并求居民月收入在[3000,4000)的頻率;
(Ⅱ)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(Ⅲ)為了分析居民收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人進(jìn)行分析,則月收入在[2500,3000)的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,a=1,B=45°,向量
m
=(-1,1),
n
=(cosBcosC,sinBsinC-
3
2
,且
m
n
,
(Ⅰ)求A的大;   
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù),并寫出乙組數(shù)據(jù)的中位數(shù);
(2)經(jīng)過計算知甲、乙兩人預(yù)賽的平均成績分別為
.
x
=85,
.
x
=85,甲的方差為S
 
2
=35.3,S
 
2
=41.現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加較合適?請說明理由.
(3)若將預(yù)賽成績中的頻率視為概率,記“甲在考試中的成績不低于80分”為事件A,其概率為P(A);記“乙在考試中的成績不低于80分”為事件B,其概率為P(B).則P(A)+P(B)=P(A+B)成立嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(4x+φ)的圖象向左平移
π
4
個單位,得到新函數(shù)的一條對稱軸為x=
π
16
,則φ的值不可能是( 。
A、-
4
B、
π
4
C、
4
D、
4

查看答案和解析>>

同步練習(xí)冊答案