【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程; (寫一般式)
(2)當(dāng)直線l的傾斜角為45°時,求弦AB的長.

【答案】
(1)解圓C:(x﹣1)2+y2=9的圓心為C(1,0),

因直線過點P、C,所以直線l的斜率為2,

直線l的方程為y=2(x﹣1),即2x﹣y﹣2=0


(2)解當(dāng)直線l的傾斜角為45°時,斜率為1,

直線l的方程為y﹣2=x﹣2,即x﹣y=0

圓心C到直線l的距離為 ,圓的半徑為3,弦AB的長為


【解析】(1)先求出圓的圓心坐標(biāo),從而可求得直線l的斜率,再由點斜式方程可得到直線l的方程,最后化簡為一般式即可.(2)先根據(jù)點斜式方程求出方程,再由點到線的距離公式求出圓心到直線l的距離,進(jìn)而根據(jù)勾股定理可求出弦長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),實數(shù)是常數(shù).

(Ⅰ)若=2,函數(shù)圖像上是否存在兩條互相垂直的切線,并說明理由.

(Ⅱ)若上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點A(﹣1,2),B(m,3).且實數(shù)m∈[﹣ ﹣1, ﹣1],求直線AB的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(其中為參數(shù), 為傾斜角).以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程,并求的焦點的直角坐標(biāo);

(2)已知點,若直線相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=lg(ax﹣1)﹣lg(x﹣1)在區(qū)間[2,+∞)上是增函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(其中為參數(shù), 為傾斜角).以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程,并求的焦點的直角坐標(biāo);

(2)已知點,若直線相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求E的方程;

2)若直線E相交于兩點,且為坐標(biāo)原點)的斜率之和為2,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作一直線與拋物線交于兩點,點是拋物線上到直線的距離最小的點,直線與直線交于點.

()求點的坐標(biāo);

()求證:直線平行于拋物線的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(2x),求g(x)在[﹣3,0]的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案