(本小題滿分14分)
如圖:某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道,是直角頂點)來處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計要求管道的接口是的中點,分別落在線段上。已知米,米,記。
(Ⅰ)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;
(Ⅱ)若,求此時管道的長度;
(Ⅲ)問:當取何值時,鋪設(shè)管道的成本最低?并求出此時管道的長度。
(Ⅰ) ,;
(Ⅱ)時,,;
(Ⅲ)當時,所鋪設(shè)管道的成本最低,此時管道的長度為米。
【解析】本試題主要是考查了函數(shù)在實際函數(shù)中的運用。
(1),,
由于,,,,所以 ,。
(2)因為時,,
(3)=,設(shè),
則,由于,
構(gòu)造二次函數(shù),求解最值。
解:(Ⅰ),,
由于,,,。3分
所以 ,……………………………5分
(Ⅱ)時,,;……………10分
(Ⅲ)=,設(shè),
則,由于,
所以 ,在 內(nèi)單調(diào)遞減,
于是當時. 的最小值米……………………13分
答:當時,所鋪設(shè)管道的成本最低,此時管道的長度為米………14分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com