把已知正整數(shù)表示為若干個(gè)正整數(shù)(至少3個(gè),且可以相等)之和的形式,若這幾個(gè)正整數(shù)可以按一定順序構(gòu)成等差數(shù)列,則稱這些數(shù)為的一個(gè)等差分拆.將這些正整數(shù)的不同排列視為相同的分拆.如:(1,4,7)與(7,4,1)為12的相同等差分拆.問正整數(shù)30的不同等差分拆有        個(gè).

 

【答案】

14.

【解析】不同等差分拆:由3個(gè)數(shù)組成:1,10,19;2,10,18;……;10,10,10;共10組;

由4個(gè)數(shù)組成:6,7,8,9;3,6,9,12;共2組;

由5個(gè)數(shù)組成:4,5,6,7,8;2,4,6,8,10;共2組;總共14組.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把已知正整數(shù)n表示為若干個(gè)正整數(shù)(至少3個(gè),且可以相等)之和的形式,若這幾個(gè)正整數(shù)可以按一定順序構(gòu)成等差數(shù)列,則稱這些數(shù)為n的一個(gè)等差分拆.將這些正整數(shù)的不同排列視為相同的分拆.如:(1,4,7)與(7,4,1)為12的相同等差分拆.問正整數(shù)30的不同等差分拆有
19
19
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把已知正整數(shù)n表示為若干個(gè)正整數(shù)(至少3個(gè),且可以相等)之和的形式,若這幾個(gè)正整數(shù)可以按一定順序構(gòu)成等差數(shù)列,則稱這些數(shù)為n的一個(gè)等差分拆.將這些正整數(shù)的不同排列視為相同的分拆.如:(1,4,7)與(7,4,1)為12的相同等差分拆.問正整數(shù)36的不同等差分拆的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把已知正整數(shù)n表示為若干個(gè)正整數(shù)(至少3個(gè),且可以相等)之和的形式,若這幾個(gè)正整數(shù)可以按一定順序構(gòu)成等差數(shù)列,則稱這些數(shù)為n的一個(gè)等差分拆.將這些正整數(shù)的不同排列視為相同的分拆.如:(1,4,7)與(7,1,4)為12的相同等差分拆.正整數(shù)27的不同等差分拆有( 。﹤(gè).
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三第一學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:填空題

把已知正整數(shù)表示為若干個(gè)正整數(shù)(至少3個(gè),且可以相等)之和的形式,若這幾個(gè)正整數(shù)可以按一定順序構(gòu)成等差數(shù)列,則稱這些數(shù)為的一個(gè)等差分拆.將這些正整數(shù)的不同排列視為相同的分拆.如:(1,4,7)與(7,4,1)為12的相同等差分拆.問正整數(shù)30的不同等差分拆有   ▲   個(gè).

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案