3.已知集合A={x|2≤2x≤8},B={x|x>2},全集U=R.
(1)求(∁UB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實數(shù)a的取值范圍.

分析 (1)化簡A,即可求(∁UB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,分類討論,求實數(shù)a的取值范圍.

解答 解:(1)A={x|2≤2x≤8}={x|1≤x≤3},B={x|x>2},…(3分)
(CUB)∪A={x|x≤3}      …(6分)
(2)①當(dāng)a≤1時,C=∅,此時C⊆A; …(8分)
②當(dāng)a>1時,C⊆A,則1<a≤3  …(10分)
綜合①②,可得a的取值范圍是(-∞,3].…(12分)

點評 本題考查集合的運算與關(guān)系,考查分類討論的數(shù)學(xué)思想,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)沒有零點的是( 。
A.$f(x)={log_2}^x-3$B.$f(x)=\sqrt{x}-4$C.f(x)=$\frac{1}{x-1}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{16}-\frac{y^2}{8}=1$的虛軸長是(  )
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知U=R,集合A={x|(x-2)[x-(3a+1)<0]},集合$B=\left\{{x\left|{\frac{x-2a}{{x-({{a^2}+1})}}<0}\right.}\right\}$.
(1)當(dāng)a=2時,求A∩∁UB;
(2)當(dāng)a≠1時,若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若直線AE與平面PBC所成角的正弦值為$\frac{{2\sqrt{7}}}{7}$,求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義域為R的函數(shù)f(x)對任意x都有f(1+x)=f(1-x),且其導(dǎo)數(shù)f′(x)滿足(x-1)f′(x)>0,則當(dāng)2<m<4時,有( 。
A.f(2)>f(2m)>f(log2m)B.f(log2m)>f(2m)>f(2)C.f(2m)>f(log2m)>f(2)D.f(2m)>f(2)>f(log2m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題“若 $α=\frac{π}{4}$,則 tanα=1”的逆否命題是( 。
A.若 $α≠\frac{π}{4}$,則tanα≠1B.若 $α=\frac{π}{4}$,則tanα≠1
C.若 tanα≠1,則$α≠\frac{π}{4}$D.若 tanα≠1,則$α=\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)向量$\overrightarrow a$與$\overrightarrow b$滿足$\overrightarrow a$=(-2,1),$\overrightarrow a$+$\overrightarrow b$=(-1,-2),則|${\overrightarrow a$-$\overrightarrow b}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知a為常數(shù),且0<a<1,函數(shù)f(x)=(1+x)a-ax,求函數(shù)f(x)在x>-1上的最大值;
(2)若a,b均為正實數(shù),求證:ab+ba>1.

查看答案和解析>>

同步練習(xí)冊答案