已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=
1
4
f(x)+ax3+
9
2
x2-b(x∈R)
,其中a,b∈R.若函數(shù)g(x)僅在x=0處有極值,求a的取值范圍.
(1)∵f(x)在區(qū)間(0,+∞)上是單調(diào)增函數(shù),
∴-m2+2m+3>0即m2-2m-3<0∴-1<m<3,又m∈z,∴m=0,1,2
而m=0,2時(shí),f(x)=x3不是偶函數(shù),m=1時(shí),f(x)=x4是偶函數(shù),∴f(x)=x4
(2)g'(x)=x(x2+3ax+9),顯然x=0不是方程x2+3ax+9=0的根.
為使g(x)僅在x=0處有極值,必須x2+3ax+9≥0恒成立,
即有△=9a2-36≤0,解不等式,得a∈[-2,2].
這時(shí),g(0)=-b是唯一極值.∴a∈[-2,2].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)為偶函數(shù)且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=2
f(x)
-qx+q-1
,若g(x)>0對(duì)任意x∈[-1,1]恒成立,求實(shí)數(shù)q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

.已知冪函數(shù)f(x)=xk2-2k-3(k∈N*)的圖象關(guān)于y軸對(duì)稱,且在區(qū)間(0,+∞)上是減函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)若a>k,比較(lna)0.7與(lna)0.6的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=(m2-m-1)xm2-2m-1,滿足f(-x)=f(x),則m=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=xm2-2m-3(m∈Z)的圖象與x軸、y軸無(wú)公共點(diǎn)且關(guān)于y軸對(duì)稱.
(1)求m的值;
(2)畫(huà)出函數(shù)y=f(x)的圖象(圖象上要反映出描點(diǎn)的“痕跡”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=x
3
2
+k-
1
2
k2
(k∈Z)

(1)若f(x)為偶函數(shù),且在(0,+∞)上是增函數(shù),求f(x)的解析式;
(2)若f(x)在(0,+∞)上是減函數(shù),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案