函數(shù)y=x3-ax在x=1處的切線與直線x-2y=0垂直,則a的值為(  )
A、5
B、
5
2
C、3
D、
1
2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,直線的一般式方程與直線的垂直關(guān)系
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:由題意可得f′(1)=-2,解方程可求a.
解答: 解:∵y=x3-ax,
∴y′=3x2-a,
∵函數(shù)在x=1處的切線與直線x-2y=0垂直,
∴f′(1)=-2,即3-a=-2,解得a=5.
故選:A.
點(diǎn)評:本題考查導(dǎo)數(shù)的幾何意義,考查直線的位置關(guān)系,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項之和Sn=n2-4n+1,則|a1|+|a2|+…+|a10|的值為( 。
A、61B、65C、67D、68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2x-1的值域是( 。
A、(0,+∞)
B、(-1,+∞)
C、(1,+∞)
D、(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某交警部門對城區(qū)上下班交通情況作抽樣調(diào)查,上下班時間各抽取12輛機(jī)動車的行駛速度(單位:km/h)作為樣本進(jìn)行研究,做出樣本的莖葉圖如圖,則上班、下班時間行駛速度的中位數(shù)分別是(  )
A、28、27.5
B、28、28.5
C、29、27.5
D、29、28.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第四象限角,且tanα=-2,則sinα=( 。
A、
5
5
B、-
5
5
C、-
2
5
5
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin2x(x∈R)是(  )
A、偶函數(shù)
B、奇函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB和CD是曲線C:
x=4t2
y=4t
(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|•|PB|=|PC|•|PD|.
(1)將曲線C的參數(shù)方程化為普通方程,并說明它表示什么曲線;
(2)試求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
x
lnx
,f(x)=g(x)-ax.
(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若?x1∈[e,e2],?x2∈[e,e2],使g(x1)≤f′(x2)+2a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1+x

(Ⅰ)求函數(shù)λ=[f(x)+f(-x)]2的值域;
(Ⅱ)設(shè)a為實(shí)數(shù),記函數(shù)h(x)=f(x)+f(-x)+af(x)•f(-x)的最大值為H(a).
(ⅰ)求H(a)的表達(dá)式;
(ⅱ)試求滿足H(a)=H(
1
a
)的所有實(shí)數(shù)a.

查看答案和解析>>

同步練習(xí)冊答案