已知α,β都是銳角,cosα•cosβ-sinα•sinβ=-
11
14
,cosα=
1
7
,求cosβ.
考點:兩角和與差的余弦函數(shù)
專題:計算題,三角函數(shù)的求值
分析:利用同角三角函數(shù)間的關(guān)系可求得sin(α+β)與sinα的值,再利用兩角差的余弦即可求得答案.
解答: 解:∵cosα•cosβ-sinα•sinβ=cos(α+β)=-
11
14
,α,β都是銳角,
∴sin(α+β)=
1-cos2(α+β)
=
1-(-
11
14
)
2
=
5
3
14

又cosα=
1
7
,
∴sinα=
4
3
7
,
∴cosβ=cos[(α+β)-α]
=cos(α+β)cosα+sin(α+β)sinα
=-
11
14
×
1
7
+
5
3
14
×
4
3
7

=
1
2
點評:本題考查同角三角函數(shù)間的關(guān)系,考查兩角和與差的余弦函數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-(
3
sinx-cosx)2
(Ⅰ)求f(
π
3
)的值和f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間[-
π
6
,
π
3
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,0),B(0,1),C(2sinθ,cosθ).
(Ⅰ)若|
AC
|=|
BC
|,求tanθ的值;
(Ⅱ)若(
OA
+2
OB
)•
OC
=1,其中O為坐標(biāo)原點,求sinθ+cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,a1=3,Sn是其前n項和,在各項均為正數(shù)的等比數(shù)列{bn}中,b1=1,且b2+S2=10,S5=5b3+3a2
(I )求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=
2
Sn
,數(shù)列{cn}的前n項和為Tn,求證Tn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)+B的一部分圖象如圖所示,如果A>0,ω>0,|φ|<
π
2
,求該函數(shù)的解析式,并求f(0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|sinθ|=
4
5
,且
9
2
π
<θ<5π,求:
(1)求tanθ的值;
(2)若直線l的傾斜角為θ-4π,并被圓(x-1)2+(y+1)2=5截得弦長為4,求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x||x-3|≤4},N={y|y=
x-2
+
2-x
},則 M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos600°的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從6名志愿者中選出4人分別從事翻譯、導(dǎo)游、導(dǎo)購、保潔四項不同的工作,若其中甲、乙兩名志愿者不能從事翻譯工作,則選派方案共有
 

查看答案和解析>>

同步練習(xí)冊答案