分析 設出等比數列的首項和公比,由已知求出公比,代入等比數列的前n項和得答案.
解答 解:設等比數列{an}的首項為a1,公比為q,
由27a3-a4=0,得27a3-a3q=0,即q=27,
∴$\frac{{S}_{4}}{{S}_{5}}$=$\frac{\frac{{a}_{1}(1-{q}^{4})}{1-q}}{\frac{{a}_{1}(1-{q}^{5})}{1-q}}$=$\frac{1-{q}^{4}}{1-{q}^{5}}=\frac{1-2{7}^{4}}{1-2{7}^{5}}=\frac{26572}{719453}$.
故答案為:$\frac{26572}{719453}$.
點評 本題考查了等比數列的通項公式,考查了等比數列的前n項和,是基礎的計算題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,7) | B. | (-∞,-7)∪(-1,+∞) | C. | (-7,1) | D. | (-∞,1)∪(7,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | λ=$\frac{1}{3}$,μ=$\frac{1}{3}$ | B. | λ=$\frac{2}{3}$,μ=$\frac{1}{3}$ | C. | λ=$\frac{1}{3}$,μ=$\frac{2}{3}$ | D. | λ=$\frac{2}{3}$,μ=$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈R,x2+x+1>0 | B. | ?x∈R,x2+x+1≥0 | ||
C. | ?x0∈R,x02+x0+1>0 | D. | ?x0∉R,x02+x0+1>0 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com