【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對(duì)心肺疾病入院的人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

A

合計(jì)

B

(1)根據(jù)已知條件求出上面的列聯(lián)表中的A和B;用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)為了研究心肺疾病是否與性別有關(guān),請計(jì)算出統(tǒng)計(jì)量,并說明是否有的把握認(rèn)為心肺疾病與性別有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中.

【答案】(1)4人;(2)見解析.

【解析】分析:(1)根據(jù)已知列聯(lián)表計(jì)算可得,分層抽樣是按比例抽取樣本,也易得抽取樣本的數(shù)量;

(2)根據(jù)所給公式計(jì)算即得.

詳解:(1)A=20,B=30由列聯(lián)表知,患心肺疾病的有30人,要抽取6人,用分層抽樣的方法,則男性要抽取

2)由列聯(lián)表中的數(shù)據(jù),代入公式中,算出,查臨界值表知:有把握認(rèn)為心肺疾病與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),x∈(b﹣3,2b)是奇函數(shù),

(1)求a,b的值;

(2)若f(x)是區(qū)間(b﹣3,2b)上的減函數(shù)且f(m﹣1)+f(2m+1)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上單調(diào)遞增,q:m≥﹣5,則p是q的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是邊長為2的等邊三角形,D為AB中點(diǎn).

(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是正方形,且A1D= ,求直線A1D與平面CBB1C1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過點(diǎn)A作⊙O的切錢EP交CB 的延長線于P,己知∠PAB=25°.

(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠DAE=25°,求證:DA2=DCBP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

105

已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為成績與班級(jí)有關(guān)系”?

參考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個(gè)點(diǎn)P,使得過P點(diǎn)作圓C的兩條切線互相垂直,則r=;設(shè)EF是直線l上的一條線段,若對(duì)于圓C上的任意一點(diǎn)Q,∠EQF≥ ,則|EF|的最小值=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S—ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,

過A作AE垂直SB交SB于E點(diǎn),作AH垂直SD交SD于H點(diǎn),平面AEH交SC于K點(diǎn),且AB=1,SA=2.

(1)證明E、H在以AK為直徑的圓上,且當(dāng)點(diǎn)P是SA上任一點(diǎn)時(shí),試求的最小值;

(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案