分析 由題意作出其平面區(qū)域,求出x-y的最值最值問題,從而求解a-2b的范圍即可.
解答 解:由題意作出$\left\{\begin{array}{l}2x-y+6≥0\\ x+y≥0\\ x≤2\end{array}\right.$平面區(qū)域,
z=x-y,可得y=x-z,直線y=x-z,經(jīng)過可行域的A時z取得最小值,經(jīng)過可行域的B時,取得最大值.由$\left\{\begin{array}{l}{x=2}\\{y+x=0}\end{array}\right.$可得B(2,-2),
由$\left\{\begin{array}{l}{x=2}\\{2x-y+6=0}\end{array}\right.$,可得A(2,10)
所以-8≤x-y≤4;
可得a≤-8,b≥4,-2b≤-8
則a-2b的范圍是:(-∞,-16).
故答案為:(-∞,-16)
點評 本題考查了簡單線性規(guī)劃,作圖要細致認真,同時考查了恒成立問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 7 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1] | C. | (3,+∞) | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個單位 | B. | 向右平移$\frac{π}{6}$個單位 | ||
C. | 向左平移$\frac{π}{12}$個單位 | D. | 向右平移$\frac{π}{12}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥e4+2e2 | B. | a>e2+2e | C. | a≥e2+2e | D. | a>e4+2e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P=Q | B. | Q?P | C. | P∩Q={2,4} | D. | P∩Q={(2,4)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 0 | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com