若將一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),先后拋擲兩次,則兩次點(diǎn)數(shù)之和為偶數(shù)的概率是     

 

【答案】

【解析】

試題分析:將一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),先后拋擲兩次,則所有的情況有 種,其中和為偶數(shù)的情況有1+1=2,1+3=2+2=4,1+5=2+4=3+3=6,……,6+6=12,那么所有符合題意的基本事件數(shù)為1+3+5+5+3+1=18種,則可知兩次點(diǎn)數(shù)之和為偶數(shù)的概率是,故答案為

考點(diǎn):古典概型

點(diǎn)評(píng):本小題考查古典概型及其概率計(jì)算公式,考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率m:n

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)若將一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),先后拋擲兩次,則出現(xiàn)向上的點(diǎn)數(shù)之差絕對(duì)值為d,則d=
1
1
時(shí)出現(xiàn)的概率最大,并且最大概率是
5
18
5
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城三模)若將一顆質(zhì)地均勻的骰子(各面上分別標(biāo)有1、2、3、4、5、6個(gè)點(diǎn)的正方形玩具)先后拋擲兩次,向上的點(diǎn)數(shù)依次為m、n,則方程x2+2mx+n=0無(wú)實(shí)根的概率是
7
36
7
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)若將一顆質(zhì)地均勻的骰子,先后拋擲兩次,出現(xiàn)向上的點(diǎn)數(shù)分別為a、b,設(shè)復(fù)數(shù)z=a+bi,則使復(fù)數(shù) z2為純虛數(shù)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)若將一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),先后拋擲兩次,則出現(xiàn)向上的點(diǎn)數(shù)之差絕對(duì)值為ξ,則寫出隨機(jī)變量ξ的分布列為:
ξ 0 1 2 3 4 5
p
1
6
5
18
2
9
1
6
1
9
1
18
ξ 0 1 2 3 4 5
p
1
6
5
18
2
9
1
6
1
9
1
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若將一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),先后拋擲兩次,則出現(xiàn)向上的點(diǎn)數(shù)之和為4的概率是(  )
A、
1
12
B、
1
6
C、
3
8
D、
2
9

查看答案和解析>>

同步練習(xí)冊(cè)答案