如下圖,已知△OFQ的面積為S,且·=1,
(1)若S的范圍為<S<2,求向量與的夾角θ的取值范圍;
(2)設||=c(c≥2),S=c,若以O為中心,F為焦點的橢圓經(jīng)過點Q,當||取得最小值時,求此橢圓的方程.
(1) <θ<arctan4.
(2) 橢圓方程為.
本題考查向量的基本知識、三角知識及最值問題在解析幾何中的綜合運用.
(1)∵·=1,∴||·||·cosθ=1.
又||·||·sin(180°-θ)=S,
∴tanθ=2S,S=.
又<S<2,∴<<2,即1<tanθ<4,
∴<θ<arctan4.
(2)以所在的直線為x軸,以的過O點的垂線為y軸建立直角坐標系(如下圖).
∴O(0,0),F(c,0),Q(x0,y0).
設橢圓方程為+=1.
又·=1,S=c,
∴(c,0)·(x0-c,y0)=1. ①
·c·|y0|=c. ②
由①得c(x0-c)=1x0=c+.
由②得|y0|=.
∴||==.
∵c≥2,
∴當c=2時,||min==,
此時Q(,±),F(2,0).
代入橢圓方程得
∴a2=10,b2=6.
∴橢圓方程為.
評析:新知識(向量)在幾何中的應用是值得關注的趨勢.
科目:高中數(shù)學 來源:資陽市2005-2006學年度高中二年級第一學期期末質(zhì)量檢測理科數(shù)學 題型:044
如下圖,已知△OFQ的面積為S,且·=1,
(Ⅰ)若S滿足條件<S<2,求向量與的夾角θ的取值范圍;
(Ⅱ)設||=c(c≥2),S=c,若以O為中心,F為焦點的橢圓經(jīng)過點Q,當||取得最小值時,求此橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com