在△ABC中,a,b,c是角A,B,C對應(yīng)的邊,向量
m
=(a+b,c),
n
=(a+b,-c),且
m
n
=(
3
+2)ab.
(1)求角C;
(2)函數(shù)f(x)=2sin(A+B)cos2(ωx)-cos(A+B)sin(2ωx)-
1
2
(ω>0)的相鄰兩個極值的橫坐標(biāo)分別為x0-
π
2
、x0,求f(x)的單調(diào)遞減區(qū)間.
(1)∵
m
=(a+b,c),
n
=(a+b,-c),
m
n
=(
3
+2)ab,
∴a2+b2-c2=
3
ab,
∴cosC=
3
2
,又0<C<π,
∴C=
π
6

(2)f(x)=2sin(A+B)cos2ωx-cos(A+B)sin2ωx-
1
2

=2sinCcos2ωx+cosCsin2ωx-
1
2

=2sin
π
6
cos2ωx+cos
π
6
sin2ωx-
1
2

=
1+cos2ωx
2
+
3
2
sin2ωx-
1
2

=sin(2ωx+
π
6
),
∵相鄰兩個極值的橫坐標(biāo)分別為x0-
π
2
、x0,
∴f(x)的最小正周期T=π,即
|2ω|
=π,ω=1,
∴f(x)=sin(2x+
π
6
),
由2kπ+
π
2
≤2x+
π
6
≤2kπ+
2
,k∈Z,得:kπ+
π
6
≤x≤kπ+
3
,k∈Z,
∴f(x)的單調(diào)遞減區(qū)間為[kπ+
π
6
,kπ+
3
],k∈Z.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)的最大值,并寫出取最大值時的取值集合;
(2)已知中,角的對邊分別為求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖A.B是單位圓O上的點,且點B在第二象限.C是圓O與x軸正半軸的交點,A點的坐標(biāo)為(
3
5
,
4
5
)
,△AOB為直角三角形.
(1)求sin∠COA;
(2)求BC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=2
3
cos
x
2
sin
x
2
+sin2
x
2
-cos2
x
2

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(A)=1,2a=3b,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知tanα=-2,求下列各式的值.
(1)
4sinα+3cosα
2sinα-cosα

(2)4sin2α+3cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=sinxcosx-
3
sin2x.
(Ⅰ)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)若x∈[0,
π
2
]
,求f(x)的最小值及取得最小值時對應(yīng)的x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2cos2x

(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求使f(x)≥2的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,單擺從某點開始來回擺動,離開平衡位置的位移和時間的函數(shù)關(guān)系為,那么單擺來回擺動一次所需的時間為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則的值為          .

查看答案和解析>>

同步練習(xí)冊答案