選修4—1:幾何證明選講
如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于 E點(diǎn),F(xiàn)為CE上一點(diǎn),且
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長(zhǎng)。
(Ⅰ)通過(guò)證明
,
,
根據(jù)
,得出
,證得
四點(diǎn)共圓.
( Ⅱ)
為所求.
試題分析:(Ⅰ)證明:
,
又
,
,
,
又
故
,所以
四點(diǎn)共圓. 5分
( Ⅱ)解:由(Ⅰ)及相交弦定理得
,
又
,
,
由切割線定理得
,
所以
為所求. 10分
點(diǎn)評(píng):容易題,作為選考內(nèi)容,這類題目往往不太難,關(guān)鍵是記清常用定理。涉及圓的問(wèn)題,一般會(huì)與三角形相似、全等相結(jié)合。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分10分)選修4-1幾何證明選講
如圖,在
中,
,
平分
交
于點(diǎn)
,點(diǎn)
在
上,
.
(1)求證:
是△
的外接圓的切線;
(2)若
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如圖示,
是半圓周上的兩個(gè)三等分點(diǎn),直徑
,
,垂足為
,則
的長(zhǎng)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如圖,從圓
外一點(diǎn)
引圓的切線
和割線
,已知
,圓
的半徑
,則圓心
到
的距離為
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如圖,在等邊△
ABC中,
P是邊
AC上一點(diǎn),連接
BP,將△
BCP繞點(diǎn)
B逆時(shí)針旋轉(zhuǎn)60°,得到△
BAQ,連接
PQ.若
BC=8,
BP=7,則△
APQ的周長(zhǎng)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
(幾何證明選講選做題)如圖,PAB、PCD為⊙O的兩條割線,若PA=5,AB=7,CD=11,AC=2,則BD等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如下圖,菱形ABCD的邊長(zhǎng)為8cm,∠A=60°,DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F,則四邊形BEDF的面積為_(kāi)___________cm
2.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長(zhǎng)線相交于點(diǎn)E,EF垂直BA的延長(zhǎng)線于點(diǎn)F.
求證:(1)
;
(2)AB
2=BE•BD-AE•AC.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分10分)
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長(zhǎng)線于點(diǎn)G。
(1)求證:圓心O在直線AD上;
(2)求證:點(diǎn)C是線段GD的中點(diǎn)。
查看答案和解析>>