10.已知函數(shù)f(x)=alnx-ax(a≠0).
(I)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)+(a+1)x+1-e≤0對(duì)任意x∈[e,e2]恒成立,求實(shí)數(shù)a的取值范圍(e為自然常數(shù));
(Ⅲ)求證lnn!≤$\frac{(n+2)(n-1)}{2}$(n≥2,n∈N*).

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)令F(x)=f(x)+(a+1)x+1-e,求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)F(x)的最大值,進(jìn)而確定a的范圍即可;
(Ⅲ)令a=1則f(x)=lnx-x,根據(jù)函數(shù)的單調(diào)性得到lnx<x,對(duì)x取值,累加即可.

解答 解:(Ⅰ)${f^'}(x)=\frac{a}{x}-a=a(\frac{1}{x}-1)=a\frac{(1-x)}{x}$
當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(0,1],單調(diào)減區(qū)間為[1,+∞);
當(dāng)a<0時(shí),f(x)的單調(diào)增區(qū)間為[1,+∞),單調(diào)減區(qū)間為(0,1];
(Ⅱ)令F(x)=f(x)+(a+1)x+1-e=alnx+x+1-e
F′(x)=$\frac{x+a}{x}$=0,若-a≤e,a≥-e,F(xiàn)(x) 在[e,e2]是增函數(shù),
$F{(x)_{max}}=F({e^2})=2a+{e^2}-e+1≤0,a≤\frac{{e-1-{e^2}}}{2}$無(wú)解.
若e<-a≤e2,-e2≤a<-e,F(xiàn)(x)在[e,-a]是減函數(shù);x∈[-a,e2]是增函數(shù),
F(e)=a+1≤0,a≤-1,.$F({e^2})=2a+{e^2}-e+1≤0,a≤\frac{{e-1-{e^2}}}{2}$
∴-e2≤a≤$\frac{e-1{-e}^{2}}{2}$,若-a>e2,a<-e2,F(xiàn)(x)x∈[e,e2]是減函數(shù),
F(x)max=F(e)=a+1≤0,a≤-1,∴a<-e2,
綜上所述a≤$\frac{e-1{-e}^{2}}{2}$ (或用參數(shù)分離法)
(Ⅲ)令a=1則f(x)=lnx-x
由(1)知f(x)在[1,+∞)上單調(diào)遞減,又因?yàn)?br />f(1)<0,所以有l(wèi)nx<x,
即ln2<2,ln3<3…lnn<n,
∴$lnn!≤\frac{(n+2)(n-1)}{2}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知無(wú)窮數(shù)列{an}的各項(xiàng)都是正數(shù),其前n項(xiàng)和為Sn,且滿足:a1=a,rSn=anan+1-1,其中a≠1,常數(shù)r∈N;
(1)求證:an+2-an是一個(gè)定值;
(2)若數(shù)列{an}是一個(gè)周期數(shù)列(存在正整數(shù)T,使得對(duì)任意n∈N*,都有an+T=an成立,則稱{an}為周期數(shù)列,T為它的一個(gè)周期,求該數(shù)列的最小周期;
(3)若數(shù)列{an}是各項(xiàng)均為有理數(shù)的等差數(shù)列,cn=2•3n-1(n∈N*),問(wèn):數(shù)列{cn}中的所有項(xiàng)是否都是數(shù)列{an}中的項(xiàng)?若是,請(qǐng)說(shuō)明理由,若不是,請(qǐng)舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.程序如圖,要使此程序能運(yùn)算出“1+2+…+100”的結(jié)果,需將語(yǔ)句“i=i+1”加在( 。 
A.①處B.②處C.③處D.④處

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-1,(x>0)}\\{f(x+1)-1,(x≤0)}\end{array}}$,則f(-1)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.定義在R上的函數(shù)f(x)滿足f(-x)+f(x)=0,f(x+2)=-f(x),且x∈(-2,0)時(shí),f(x)=2x+$\frac{1}{5}$,則f(log220)=( 。
A.1B.$\frac{4}{5}$C.-1D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}+\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)),M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P點(diǎn)的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=$\frac{π}{4}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知ax≤xlnx-x+1對(duì)任意x∈[$\frac{1}{2}$,2],恒成立,則a的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,已知一個(gè)八面體的各條棱長(zhǎng)均為1,四邊形ABCD 為正方形,則下列命題中的假命題是(  )
A.不平行的兩條棱所在的直線所成的角是60o或90o
B.四邊形AECF是正方形
C.點(diǎn)A到平面BCE的距離為$\frac{\sqrt{6}}{3}$
D.該八面體的頂點(diǎn)不會(huì)在同一個(gè)球面上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,且S5<S6=S7>S8,則下列結(jié)論錯(cuò)誤的是( 。
A.d<0B.a7=0
C.S${\;}_{{9}_{\;}}$>S5D.S6和S7均為Sn的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案