【題目】隨機抽取某校高一100名學生的期末考試英語成績(他們的英語成績都在80分140分之間),將他們的英語成績(單位:分)分成:,,,,六組,得到如圖所示的部分頻率分布直方圖,已知成績處于內與內的頻數(shù)之和等于成績處于內的頻數(shù),根據(jù)圖中的信息,回答下列問題:
(1)求頻率分布直方圖中未畫出的小矩形的面積之和;
(2)求成績處于內與內的頻率之差;
(3)用分層抽樣的方法從成績不低于120分的學生中選取一個容量為6的樣本,將該樣本看成一個總體,從中任選2人,求這2人中恰有一人成績低于130分的概率.
【答案】(1) 0.45 (2)0.15 (3)
【解析】
(1)根據(jù)頻率分布直方圖中的小矩形的面積之和為1即可求解(2)設成績處于與內的頻率分別為,根據(jù)題意可得,解得即可求解(3)根據(jù)分層抽樣可知需從成績處于內的學生中選取5人,從成績處于內的學生中選取1人,根據(jù)古典概型求2人中恰有一人成績低于130分的概率即可.
(1)由題意可知,成績處于內的概率為,所以頻率分布直方圖中未畫出的小矩形的面積之和為0.45.
(2)設成績處于與內的頻率分別為,
因為成績處于內與內的概率之和等于成績處于內的頻率,
所以成績處于內與內的概率之和等于成績處于內的概率,
所以,解得,
所以成績處于內與內的頻率之差為
(3)由題可知,成績處于內的學生數(shù)為,成績處于內的學生數(shù)為,所以用分層抽樣的方法從身高不低于120分的學生中選取一個容量為6的樣本,需從成績處于內的學生中選取5人,記為A,B,C,D,E.從成績處于內的學生中選取1人,記為.從中任選2人: 共有15種情況,這2人中恰有一人成績低于130分的共有5種情況,這2人中恰有一人成績低于130分的概率.
科目:高中數(shù)學 來源: 題型:
【題目】公司從某大學招收畢業(yè)生,經過綜合測試,錄用了14名男生和6名女生,這20名畢業(yè)生的測試成績(單位:分)如下:
男:165 166 168 172 173 174 175 176 177 182 184 185 193 194
女:168 177 178 185 186 192
公司規(guī)定:成績在180分以上(包括180分)者到“甲部門”工作;180分以下者到“乙部門”工作.
(1)求男生成績的中位數(shù)及女生成績的平均數(shù).
(2)如果用分層隨機抽樣的方法從“甲部門”人選和“乙部門”人選中共選取5人,再從這5人中選2人,那么至少有一人是“甲部門”人選的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】人的正常體溫在至之間,下圖是一位病人在治療期間的體溫變化圖.
現(xiàn)有下述四個結論:
①此病人已明顯好轉;
②治療期間的體溫極差小于;
③從每8小時的變化來看,25日0時~8時體溫最穩(wěn)定;
④從3月22日8時開始,每8小時量一次體溫,若體溫不低于就服用退燒藥,根據(jù)圖中信息可知該病人服用了3次退燒藥.
其中所有正確結論的編號是( )
A.③④B.②③C.①②④D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取某校高一100名學生的期末考試英語成績(他們的英語成績都在80分140分之間),將他們的英語成績(單位:分)分成:,,,,六組,得到如圖所示的部分頻率分布直方圖,已知成績處于內與內的頻數(shù)之和等于成績處于內的頻數(shù),根據(jù)圖中的信息,回答下列問題:
(1)求頻率分布直方圖中未畫出的小矩形的面積之和;
(2)求成績處于內與內的頻率之差;
(3)用分層抽樣的方法從成績不低于120分的學生中選取一個容量為6的樣本,將該樣本看成一個總體,從中任選2人,記這2人中成績低于130分的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經過點,且的面積為.
(1)求橢圓的標準方程;
(2)設斜率為的直線與以原點為圓心,半徑為的圓交于,兩點,與橢圓交于,兩點,且,當取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:過點A,兩個焦點為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示是一個幾何體的直觀圖、正視圖、俯視圖、側視圖(其中正視圖為直角梯形,俯視圖為正方形,側視圖為直角三角形,尺寸如圖所示).
(1)求四棱錐P-ABCD的體積;
(2)證明:BD∥平面PEC;
(3)線段BC上是否存在點M,使得AE⊥PM?若存在,請說明其位置,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(2)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com